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ABSTRACT It is essential to enhance the speed and accuracy of the localization process to gain the
robustness and instantaneous properties and to adapt from the practical environment of a confidence band.
In this paper, we proposed a new received signal strength indicator-based method to construct a real-
time confidence band, which was composed by multiple confidence region sets in a multivariate normal
distribution, associated to a target’s trajectory for location-based services. Based on the concept of weighted
positioning circular algorithm, we designed a new objective function to take into consideration the signal
disruptions of the surrounding environments. The characteristics of the state of motion for the moving target
were then inferred from the status of each confidence region. In order to speed up the localization process
to obtain the real-time estimate of the confidence band via our objective function, we proposed in this
paper a swarm intelligence-based localization optimization algorithm, which wasmodified from the standard
framework of a novel swarm intelligence-based evolutionary algorithm.

INDEX TERMS Confidence band, localization, swarm intelligence based (SIB) optimization, wireless
sensor network (WSN), received signal strength indicator (RSSI), circular positioning algorithm.

I. INTRODUCTION
Wireless communication has been widely used in our
daily life after some remarkable recent breakthroughs [1].
The widespread deployment of wireless devices allows
the researchers to study the feasibility of utilizing Radio
Frequency (RF), like the Wi-Fi being standardized by
IEEE 802.11, to provide Location Based Services (LBS) as
well as communication services to users. As the most well-
known RF, the Wi-Fi uses a specific frequency range within
the signal bands of both 2.4 GHz and 5 GHz as a channel and
serves as a medium to allow devices to connect to the Wire-
less Local Area Network (WLAN), which provides wireless
network communication within a limited area.

Rather than passively listening to the signals, the Wi-Fi-
based devices mostly apply the technique of active scan-
ning to gain access to the Internet through WLAN. In spe-
cific, these devices scan through each channel, send a Probe
Request (PR) management frame and ask for the avail-
able network on that channel to the nearly Wi-Fi access

points (APs). Specific characteristics, including Received
Signal Strength Indicator (RSSI), Time of Arrival (TOA)
and Time Difference of Arrival (TDOA), can be extracted
from each PR. Consequently, these characteristics are used
to obtain an estimate of the device position via localization
algorithms [2], but it is not trivial to model the radio propa-
gation in various environments due to diffraction, scattering,
shading, severe multi-path, low probability for availability of
line-of-sight (LOS) path and specific site parameters such as
moving objects and numerous reflecting surfaces [3].

Many localization algorithms, some are range-based
and others are range-free [4], are proposed in literatures.
In general, a range-based algorithm provides more accurate
localization results than a range-free algorithm, so it is tra-
ditionally suggested for estimating positions, but it is not
trivial to implement due to high hardware requirements. In
specific, the TOA-based localization algorithms require pre-
cise clock synchronization [5]–[9], the TDOA-based localiza-
tion algorithms require ultrasonic transceivers [10]–[14] and
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the AOA-based localization algorithms require directional
antenna [15]–[17]. On the contrary, no additional hardware is
required for RSSI-based localization algorithms, thus it has
been broadly used in many applications for its simplicity and
low implementation cost [4]. Most radio propagation models
in RSSI-based localization techniques assume to have perfect
channels, but it does not hold in practice. [18] proposed
a RSSI-based weighted circular algorithm to take care of
imperfect channels, but it has no guarantee on the real-time
position estimate of a target. In order to complete the local-
ization process within a limited amount of time, newmethods
with speed and accuracy optimization are of great interest.

Swarm Intelligence Based (SIB) method, which is famed
for its fast convergence, simple implementation and low
computational cost, comes into play. It was first proposed
to solve the optimization problems in the designs of exper-
iments in statistics [20]–[22]. No assumption is required on
the objective function of SIB. Due to the architecture in the
SIB algorithm, its computational performance can be doubled
by applying CPU parallel computing on a single dual-core
computer [19]. On the other hand, some have explored device
trajectory along different time-slots to gain a better resolution
into the target device. Trajectory data is considered as a core
revealing details of instantaneous behaviors piloted bymobile
entities [23]. Although most of the researches in localization
focus on the techniques for positioning, the characteristics of
the trajectory formed by user’s position through different time
slots is seldom mentioned and discussed. These characteris-
tics from feature extraction of the device’s estimated position
are important for providing promising LBS.

The confidence band is well-known in statistics to repre-
sent the uncertainty in a function estimation from a limited or
noisy data [24]–[26], [30], [31]. Various informative analyses
and different dependency relationships among factors can be
extracted by the construction of the confidence band. Such
an important tool has not been popularly applied in the field
of engineering yet. This leads to our proposed method to
construct real-time confidence bands for a target’s trajectory
based on a new RSSI localization approach. In specific, we
introduce a new objective function based on the concept of
the weighted positioning circular algorithm to consider the
conditions in the real environment. We then modify the SIB
method to search for a good solution via speeding up the
process of localization for a duplicate sampling of distance
estimation. A confidence band for the target’s moving trajec-
tory is constructed via simultaneous inference and coordinate
dependency of the estimated target position. Finally, the char-
acteristics of the state of motion are obtained from the status
of the confidence band.

The paper is organized as follows. In section II, the back-
ground of channel modeling localization and the concept
of confidence region are described. Section III presents the
approach of the proposed localization algorithm and the con-
struction of trajectory-based confidence band. Section IV
evaluates the result of our proposal. Section V concludes the
paper and outlines the future work.

II. CHANNEL MODEL LOCALIZATION AND
CONFIDENCE REGION
A. CHANNEL MODELING LOCALIZATION
Consider two types of nodes in a Wi-Fi network: mobile
and APs. As the mobile tries to gain access to the inter-
net, our device automatically sends a PR management frame
searching for the available network on that channel actively
to nearby APs. On the other hand, the nearby APs obtains
the RSSI of the requests sent out by our mobile devices. The
distance between the device and the APs can be calculated
by the APs by applying various channel models according
to the need of applications and assumptions [27]. This paper
considers the Free-space path loss (FSPL) model: P̄L(di) ∝
(di/do)η and P̄L(dB) = P̄L(do) − 10ηlog10(di/do) for i =
1, 2, . . . , n, where do is the near earth reference distance,
P̄L(do) is the signal strength at distance do and η is the signal
attenuation factor with value between 2 to 6 according to
different environments. It is the most common model [4] to
obtain the corresponding distance between the device and the
APs. The position of the device is then determined from the
estimated distances by using amulti-lateration algorithm. The
second equation represents the channel model with perfect
channel condition without considering the attenuation caused
by flat fading effect. In this paper, the case of shadow fading
or slow fading is considered. The noise is considered as a
random variable from a Gaussian distribution with a standard
deviation of σ . Then the RSSI-based weighted circular posi-
tioning algorithm [18] is applied to estimate the position of
the device in this paper.

In a circular positioning algorithm [28], the target’s loca-
tion is determined from the intersections of circumferences
centered at the APs. The positions of the APs are known
and located accurately in a certain position, and the radius of
the circumferences is estimated by the relationship between
RSSI in the Free-space path loss model. Due to the existence
of uncertainty in the RSSI-distance estimation caused by the
channel environment, the intersections of the circumferences
is presented as a range of area instead of a single unique
point. A nonlinear least square method is applied to solve the
problem as it provides a comparablymore accurate result than
other methods [29]. Our goal is to minimize the sum-square
error on the device location, thus our objective function is

expressed as ε =
∑N

i=1 (
√
(xi − x)2 + (yi − y)2 − d̂i)

2
where

xi and yi are the x- and y-coordinates of the ith AP, and d̂i is
the estimated distance from the target to the ith AP.

In real localization applications, the channel environment
may vary under different circumstances and cause a consid-
erable amount of variation with respect to the standard devi-
ation of the Gaussian noise, generating from shadow fading
and model error caused by uncertain propagation parameters.
These errors in the RSSI-distance conversion may lead to an
inaccurate representation of the real radio channel and pro-
duce undesirable results in localization. The second equation
of FSPLmodel reveals that the variance of the Gaussian noise
is correlated with the distance between the target device and
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the AP. Since a shorter distance between the target device and
the AP results in a higher accuracy of the estimated distance,
a majorization approach on the accurate measurement is able
to obtain an accurate localization result.

In light of above, a weighted circular positioning algo-
rithm [18] is a good substitute to its standard version in this
manner. The error in the distance estimation for the ith AP
is given by ei = di − d̂i =

√
(xi − x)2 + (yi − y)2 − d̂i

and the weighted least square error is ε = eT S−1e, where
S is the covariance matrix of the random vector. Since the
elements in the random vector is assumed to be uncorrelated,
so S can be simplified to a diagonal matrix. The objective

function can then be modified as ε =
∑N

i=1
e2i

Var(ei)
. The

variance of the estimated distance d̂i can be expressed as
Var(d̂i) = exp(2µd )(exp(2σ 2

d )− exp(σ 2
d )), where µd = ln di

and σd = σ ln 10
10η .

Finally, the objective function can be expressed as

f (x) =
N∑
i=1

1

Var(d̂i)
(
√
(xi − x)2 + (yi − y)2 − d̂i)

2
. (1)

As shown in Equation 1, the objective function is equal to
the weighted sum of the squared errors in the set of estimated
distances and the weights are given according to the varia-
tion of d̂i. Since an estimate of a large distance results in a
large variance, the objective function with ill-assigned weight
would lead to unreliable influence on the measurements.

B. CONFIDENCE REGION
Confidence intervals were introduced for estimating a sin-
gle parameter for random variables of single-dimension for
which the difference between the parameter and the observed
estimate is not statistically significant at a specific level.
Confidence regions can be similarly defined for vectors of
parameters, such as the mean vector µ for multivariate ran-
dom vectors. The resulting confidence regions are in the
form of ellipsoids. The regions cover the vector µ with a
specific level of assigned probability, usually high. To effi-
ciently obtain the confidence region of a mean vector, the
correlations between the estimate parameters are taken into
consideration. According to the Central Limit Theorem, the
joint probability distribution of the estimated locations is rea-
sonably assumed to be normally distributed. Consequently,
construction of a confidence region for a multivariate normal
distributed random vector is recalled as follows.

Consider n i.i.d p-dimensional random vectors Xi =
{xi1, xi2, . . . , xip} ∼ Np(µ,6) for i = 1, 2, . . . , n
and µ is the p-dimensional vector µ = E[Xi] =

[E[xi1],E[xi2], . . . ,E[xip]]T . For x ∈ Rp, the joint prob-
ability density function (pdf) of Xi is f (x|µ,6) =

1

(2π )
1
2 p|6|

1
2
exp{− 1

2 (x − µ)
T6−1(x − µ)}. It is necessary to

derive the mean estimate X̄ and the covariance matrix S
in order to construct a confidence region from the esti-
mated locations, and they can be obtained by using the
maximum likelihood estimation (MLE) of their pdf. Given

the observations of a k-dimensional random vector xk =
{x1, x2, . . . , xk}, where xk ∼ kN (µ,6), the estimate x̄ can
be expressed as x̄ = 1

N

∑N
i=1 xi and the estimate 6̂′ =

1
N

∑N
i=1(xi − x̄)(xi − x̄)T . Note that 6̂′ is biased estimator

of6, the unbiased estimator of the sample covariance matrix
is 6̂ = N

N−1 6̂
′. Since x̄ and 6̂ are independent, the former

follows the normal distribution
√
N (x̄ − µ) ∼ Np(0, 6)

and the latter follows the Wishart distribution (N − 1)6̂ ∼
Wp(N − 1, 6). It follows that

N − p
(N − 1)p

N (x̄ − µ)T 6̂−1(x̄ − µ) ∼ Fp,N−p (2)

where Fp,N−p is the F-statistics of degrees p and N − p.
A confidence region A ∈ Rp corresponds to an area with
coverage probability of 1−α that contains the mean vectorµ,
where α ∈ (0, 1) if P(µ ∈ A) ≥ 1 − α,∀µ ∈ Rp. Therefore,
the (1 − α)100% confidence region for the mean of a p-
dimensional normal distribution is

P(N (x̄ − µ)T 6̂−1(x̄ − µ) ≤
(N − 1)p
N − p

Fp,N−p(α)) = 1− α

(3)

and it corresponds to the set A = {µ ∈ Rp
:

N (x̄ − µ)T 6̂−1(x̄ − µ) ≤ (N−1)p
N−p Fp,N−p(α)}. The inequality

defines a p-dimensional ellipsoid centered at x̄.

III. CONSTRUCTION OF CONFIDENCE BAND
This section introduces the modified objective function for
duplicate RSSI sampling and the SIB evolutionary algo-
rithm, followed by the construction of confidence band of the
target’s moving trajectory.

A. OBJECTIVE FUNCTION FOR DUPLICATE SAMPLING
To improve the accuracy of localization, we consider the aver-
age of the RSSI signals sent from the targets to estimate their
distances between the APs. The estimated distance between
a target and each AP is estimated in multiple times. Each
acquired distance is considered as a sample of the estimation.
The amount of sampling for the estimated distance between
the target and each AP varies according to the state of motion
of the target. If the target moves slowly or stays in the
same location, the number of samples for each estimation is
expected to be large, and vice versa. After the estimations, the
mean of the estimated distance can be obtained by iteratively
sampling the distances between the target and each AP as
¯̂
id =

∑n
i=1 d̂i
ni

, where d̂i is the estimated distance between the
target and the ith AP, ni is the number of estimated samples
between each AP and ¯̂di is the mean value for d̂i.
¯̂di is applied to the localization objective function as the

final estimated distance between the target and the ith AP.
The intention for this approach is to reduce the variance of
each estimation and obtain an accurate result according to the
law of large numbers. However, a huge amount of distance
estimations is required in order to obtain the variance of ¯̂di
if the objective function for the weighted circular algorithm
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is directly applied. This leads to a large sampling time for
estimating the distances d̂i in order to get enough amount of
¯̂di to obtain the corresponding variance Var(

¯̂di). It turns out to
be time-consuming and inefficient for a real-time localization
for a moving target, which makes the construction of confi-
dence band unrealistic. Consequently, this paper modifies the
objective function of the algorithm by directly approximating
the variance of the sample mean Var( ¯̂di) =

Var(d̂i)
ni

.
On the other hand, the variance of d̂i in the weighted cir-

cular algorithm was assumed to follow a logarithmic normal
distribution under mathematical assumptions of the channel
model. However, this may result in some distortion and inac-
curate estimates of the real variances. As the estimation is
different under different environments, it is appropriate to
find the variances based on the real conditions instead of con-
sidering to assume a general distribution. In other words, the
variance of d̂i can be obtained from the sampled values. The
unbiased estimator of the variance of the sample distances is

Var ′(d̂i) = Si =

√
1

ni−1

∑ni
j=1 (d̂i −

¯̂di)
2
, and the variance of

the sample mean is Var ′( ¯̂di) =
Si
ni
. Thus, the final objective

function used in our method is expressed as

f (x) =
N∑
i=1

ni
Var ′(d̂i)

(
√
(xi − x)2 + (yi − y)2 −

¯̂di)
2
. (4)

In most conditions, ni would be the same and the equa-
tion can be simplified. Nevertheless, the stability of signal
detection due to signal attenuation for Wi-Fi APs located
with a certain amount of distance beyond the target should
be taken into consideration. While most of the existing Wi-Fi
based localization approaches aim to find a good estimate of
the target’s location, few have taken the stability of faraway
Wi-Fi APs into consideration. This phenomenon becomes
statistically significant when the target is moving under a
particular velocity and it leads to inaccurate results when
the band is constructed. The proposed objective function is
capable of handling this problem by slightly adjusting the
weights to gain an extra accurate estimate.

The modification of our objective function in Equation 4
have three major contributions: First, the variance of the
sample mean Var (̄̂di) can be obtained approximately without
requiring a large amount of estimated samples of distances.
Second, the assigned weights to different estimates are more
accurate and closer to the actual condition in practice. Third,
the objective function has taken the unstable conditions of
signal attenuation into consideration.

B. THE SIB ALGORITHM FOR LOCALIZATION
The SIB algorithm was first proposed to optimize designs of
experiments in statistics under various criteria of design prop-
erties [20]. This method can be applied for the search of both
continuous and discrete domains. The general framework of
the SIB algorithm is shown in Figure 1.

In the step of initialization, possible solutions are generated
as initial particles, the values of the objective function for

FIGURE 1. The process of SIBL algorithm.

these particles are evaluated, each of which has its own per-
ceived location of initial optimum in the search space called
Local Best (LB) particles. All particles share information by
comparing its initial LB with other to perceive the overall
optimum location called Global Best (GB) particle. In this
step, the number of the initial particles and the stopping
criterion are set. For the particles to collectively arrive at the
perceived overall optimum location, they go through the steps
of MIX and MOVE operations iteratively after the initial-
ization step. LB particles and the GB particle are updated
continuously in each iteration until the stopping criterion is
fulfilled, which can be the reach of either the pre-specified
maximum number of iterations or a known optimal value of
the GB particle.

In the MIX operation, each particle goes through the dele-
tion and addition steps. Assume that every particle X is con-
sisted of m discrete units: X = {x1, x2, . . . , xm}. The deletion
step for X is a recursive procedure that determines the best
units to be removed from X . It continues iteratively with a
single element being removed in each iteration. The number
of deleted units is pre-specified in the initialization step. The
reduced particle is denoted by X−R. We then consider the
good particle Y chosen from the LBs or the GB. The addition
step iteratively adds a single element from Y into the reduced
particle X−R in a similar fashion. When the MIX operation
of X is completed, two new candidate particles are resulted:
mixwGB when Y is the GB particle, and mixwLB when Y is
the LB particle.
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The MOVE operation is a decision-making procedure to
select the best particles among all candidates with the optimal
values of objective functions. Three candidates among X ,
mixwLB and mixwGB are compared and chosen for update.
If both mixwLB and mixwGB have worse objective values
than X , some units of X are randomly chosen and replaced
by some other random units to avoid local optimal solution.

Now we consider the SIB method for localization prob-
lems, namely the SIBL algorithm. We considers a square
domain for localization with the center of the area being the
origin (0, 0). In the step of initialization, the size of the square
domain ` × `(m2) is first determined. Then initial particles
are generated and designed in the form of two-dimensional
vectors xk = {xk1 , xk2 for k = 1, 2, . . . ,m. Each element is
assigned with a random value within the range of [− `2 ,

`
2 ] to

represent the target’s location in the Cartesian coordinates.
Since the objective values for the new objective function
has yet been defined theoretically, this paper only considers
the number of maximum iterations as the stopping criterion.
Based on our observations and experience, the objective value
converges rapidly with an average of three iterations in the
experiment, so we assign the maximum number of itera-
tions to be five, which is slightly higher to avoid incomplete
convergence. On the other hand, the number of elements
in each designed particle is small comparing to that in the
SIBSSD algorithm [22], so the execution speed is fast as the
number of discrete units to exchange in the MIX operation
is limited to either one or two. Since the execution time for
the MIX operation dominates the running time of the entire
algorithm, fast speed in MIX provides the capability for the
SIBL algorithm to localize the target rapidly and supports
the need for real-time positioning to construct the confidence
band.

However, there are some tradeoffs behind the benefits
brought by the design of particles. We denote the number
of discrete units to be exchanged in the MIX operation as q.
If q is fixed to be one, only one element is being exchanged
in each iteration of the entire MIX operation, which limits the
diversity and improvement of the particles. In contrast, if q is
assigned with a value of two, all elements in each particle are
exchanged. The potentially ‘‘good’’ elements in the original
particle can hardly be maintained. In order to increase the
diversity of particles for localization while retaining the speed
performance for the SIBL algorithm, the MIX operation for
SIBL is slightly modified so that it does not change the design
of particles. For the MIX operation in SIBL, the value of q
is determined dynamically instead of being directly assigned
with a fixed number. The value of q is assigned to either one
of its possibilities with each having an equal probability of
0.5. Throughout this process, the diversity of the generated
particles during the MIX operation can be increased whereas
the original design of the particle still remains the capability
to construct the real-time confidence band for the target’s tra-
jectory. In the SIBL algorithm, the MOVE operation directly
inherits the concept introduced in the standard framework of
the SIB algorithm.

The pseudo code of the SIBL algorithm is as shown below.
1: Determine the size of the square domain `× `(m2).
2: Randomly generate a set of initial particles.
3: Evaluate the localization-based objective function

value for each particle.
4: Initialize the LB for all particles.
5: Initialize the GB.
6: while not converge do
7: Determine the number of elements to be exchanged.
8: For each particle, perform the MIX operation.
9: For each particle, perform the MOVE operation.
10: Evaluate the localization-based objective function

value for each particle.
11: Update the LB for all particles.
12: Update the GB.
13: end while

C. CONSTRUCTION OF THE CONFIDENCE BAND
Confidence band can be categorized into many different
types, each type is suitable for a specific usage or an appli-
cation. In this paper, the confidence band corresponds to the
simultaneous confidence band. The simultaneous confidence
band is formed by a collection of confidence sets. With a
given coverage probability, the simultaneous confidence band
covers the corresponding true values for all collection of
confidence sets. To construct the confidence band of moving
trajectory, the confidence sets of every estimated position in
each area is established in advance. The confidence sets for
every estimated area are considered as confidence regions
of a multivariate normal distribution of two dimensions.
A confidence region of a certain area is then constructedwhen
the target’s position is detected within. To construct the confi-
dence regions, we consider N estimates of positions for a cer-
tain area with a total number of areasM . For i = 1, 2, . . . ,M ,
each estimated position of a particular area, namely the ith
area, is considered as a two-dimensional normal distributed
random vector xij = {xij1 , xij2} for j = 1, 2, . . . ,N . The mean
vector and the covariance matrix can be obtained by x̄i =
1
N

∑N
j=1 xij and 6̂

′
i =

1
N

∑N
i=1(xij− x̄)(xij− x̄)

T respectively.
Then the confidence region of the estimated positions of a
certain location can be obtained from

P(N (x̄i − µ)T 6̂−1(x̄i − µ) ≤
(ni − 1)p
ni − p

Fp,ni−p(α)) = 1−α

(5)

where α is the factor to determine the confidence level for
each region A = {µ ∈ R2

: ni(x̄i − µ)T 6̂−1(x̄i − µ) ≤
(ni−1)p
ni−p

Fp,ni−p(α)}.
We construct the confidence band after the confidence

regions for all domain areas are established and the targets
are appeared near the APs. In specific, Equation 5 is satisfied
for all xi ∈ X the set of positions in all areas of localization,
i = 1, 2, . . . ,M , so that the constructed confidence band
covers the true values for all collection of confidence sets.
In other words, the confidence band can be recast as the joint
confidence regions constructed by adjusting the confidence
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levels of every confidence region. In this paper, we apply the
Bonferroni method to adjust the M confidence regions such
that the confidence level of each of theM regions is increased
from 1 − α to 1 − α/M . As a result, the probability that the
simultaneous confidence band covers the corresponding true
values for all collection of confidence sets is approximately
1− α and Equation 5 is satisfied.
The confidence band is informative if the number of

confidence regions are large. However, since there are inap-
propriate positions for the deployment of APs, Wi-Fi based
localization cannot always target all positions of every area
along the entire traveling path. Since we construct the con-
fidence band based on the target’s trajectory, the estimation
accuracy of every position need not always be precise and a
certain amount of tolerance is allowed. In order to construct
a well-informed confidence band that covers as many confi-
dence regions as possible, the position estimate for the areas
with less than three intersections of AP signals is targeted
by the APs to build up the band. The established confidence
region under this situation is expected to have a large size
originated from the increase of estimation variation. Such
minor defects are acceptable to the whole structure of the
confidence band.

Sometimes the client sends out a PR at its lowest supported
data rate, typically 1 Mbps, the rate of receiving RSSI signals
as well as the number of estimations for the distance between
AP and target are assumed to be constant. Then the confi-
dence band for a traveling trajectory reveals the average speed
of the target along the path without any other extra hardware
implementations. Since the APs localize the moving target
repeatedly, the moving speed depends on the number of
localization operated by the APs for each position. The result
show that the size of the confidence band is highly correlated
with the average speed of the moving target. Subtle changes
in the moving speed results in a non-neglectable alteration
of the size of the confidence band. This fact implies that the
confidence band provides important information about the
motion of the traveling target, which can be useful on many
applications after appropriate data analysis is conducted.

IV. SIMULATION AND ANALYSIS
The simulation performed in this section is carried out by a
SIB programwritten in Python. TheWi-Fi APs are uniformly
deployed in a sensor field of 500 × 500 square meters with
each AP having a transmission radius of 50 meters. The
noise of the received RSSI signal is approximated as a white
Gaussian noise WÑ(0, 0.7 × d) from the experiment and d
is the distance between the target device and AP. The target
travels through the area by random walk with forwarding
probability 0.6 and probability of going either left or right 0.2.
The target walks 20 meters along the direction every time
after the direction is selected.

In the SIBL algorithm, we initialize 2000 particles and
the maximum number of iterations ranges from 1 to 5 in
five different cases. The confidence bands of the target’s
trajectory are gradually improved from the increasing number

of iterations being carried out in SIBL, and they are illus-
trated in Figures 2 to 5. The blue and red lines represent
the trajectory of the moving target and the estimated path
of the target respectively, while the purple ellipses are the
confidence region for every estimated positions. The green
triangles and circles represent the APs and their signal ranges.

FIGURE 2. Confidence band with 1 iteration of SIBL.

FIGURE 3. Confidence band with 2 iterations of SIBL.

In Figures 2 to 5, the confidence bands are shown at 95%
confidence level for the moving trajectory. The completeness
of these bands depend on the number of iterations executed
in SIBL. It is obvious that the band constructed via few
iterations is sparse and vice versa. With large number of
iteration, the band begins to converge alongside with the
path of the moving target. The positive dependency between
the number of iteration and the computational time leads
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FIGURE 4. Confidence band with 3 iterations of SIBL.

FIGURE 5. Confidence band with 5 iterations of SIBL.

to a tradeoff between the completeness and computational
time of generating the confidence band. Nevertheless, most
bands reach a well-converged state within 5 iterations in our
simulation.

On the other hand, since the number of position estimations
are related with the speed of the moving target, the effec-
tiveness of confidence band for speed detection is demon-
strated by comparing the average size of the confidence bands
with different corresponding number of estimations. Larger
amount of estimations represents a higher amount of speed.
To ensure that the size of confidence band alters in the same
fashion under different rate of RSSI estimation, the size of
the confidence band with different corresponding number
of estimations is also compared under various transmission

frequency of PR. The simulation demonstrates the confidence
band with the number of estimations within the range of 3 to
20 as benchmarks. The results are shown from Figures 6 to 9.

FIGURE 6. Band size under estimation rate 20.

FIGURE 7. Band size under estimation rate 30.

FIGURE 8. Band size under estimation rate 40.

The size of the confidence region is highly correlated
to the number of position estimates under different rate of
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FIGURE 9. Band size under estimation rate 50.

RSSI estimation between the target and each APs. Under all
different rates of RSSI estimation, the size of the confidence
band decreases significantly as the number of localization
increases from 3 to 9 and becomes relatively stable when the
number of localization continues to increase. This size differ-
ence of the bands are remarkable among different speeds of
the moving target, so it can clearly be used to reveal the speed
of the target when a particular rate of RSSI estimation is set.

The rate of RSSI estimation is negatively related to the
size of the confidence band as shown in Figure 10, but the
alteration of the size between different frequencies at a fixed
number of localization is not as notable as that between
different amount of position estimations at a fixed rate of
RSSI estimation. The speed of the moving target can be
detected from the size of the band by knowing the number
of RSSI estimation between the target and each AP. Thus, we
can record in a database the size patterns of the confidence
band with different number of estimation and different RSSI
estimation frequency for data matching. The average speed
of a target along the traveling trajectory can then be detected
by matching the size of its corresponding confidence band in
the database.

FIGURE 10. Band size under different estimation rate.

V. CONCLUSION AND FUTURE WORK
This paper proposes a new statistical method via a RSSI-
based localization approach to construct real-time confidence
sets and the confidence bands for the target’s trajectory. We
study the simultaneous inference on the estimated positions
of the target and the dependency of the coordinates in each
estimated positions. We also investigate the speed charac-
teristics and patterns of the state of motion for a moving
target that can be detected from the status of each confidence
region in the constructed confidence band. To measure the
positions adapted from the real environment, we propose a
new objective function for localization. Then a modified SIB
method called SIBL algorithm is then proposed for obtaining
a confidence band with accuracy and speed. Experimental
results shows that the confidence bands converge within
a very small amount of iterations. Furthermore, the speed
detection of a moving target is efficiently achieved without
requiring any additional hardware implementations and large
computational resources.

When we construct the confidence band, we apply the
Bonferroni method to adjustM confidence regions. One may
aware that this method is well-known to be conservative as
the probability of simultaneous confidence band covers the
corresponding true values for all collection of confidence sets
is larger than 1−α

M . In many cases it goes to 1 when M is too
large, resulting in a simultaneous confidence band that tends
to be too wide and less informative. Thus, when M is very
large, we suggest to consider some less conservative method
on the adjustment of confidence regions. For example, it is
possible to apply a precise simultaneous confidence bands for
an unknown function introduced in [31].

To further reduce the computational costs, parallel comput-
ing architecture can be implemented to the SIBL algorithm
with multi-core CPU, and it can be a promising extension
from this work. In addition, we suspect that the transfor-
mation of the elements in each initialized particle of the
SIBL into binary numbers may lead to a better chance to
achieve global optimum before trapping in a local optimum.
Furthermore, the concept of confidence band can be extended
into prediction band, which can be used for characteristics
predictive purposes. The target’s path can then be predicted
through such construction, and the target’s position can also
be revealed via the sampled datasets with prescribed proba-
bility. The target’s future movement can be forecasted and it
is of great interest in many traffic areas.
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