

Abstract—Supercomputing has been indispensable in the

unstoppable trend of high-speed computing evolution. This

work aims at improving its running efficacy by introducing a

new two-step scheduling approach. Based on the analysis of

large historical data, we provide an accurate runtime estimation

scheme using Instance-Based Learning (IBL) in the first step.

Then a swarm intelligence based scheduling (SIBS) method is

proposed to optimize the scheduling performance in terms of

total runtime makespan and fair resource allocation. A method

comparison on a dataset from the ALPS supercomputer, which

consists of 804k workload data in 2016, shows that our proposed

method outperforms the most commonly used strategy –

Extensible Argonne Scheduling System (EASY).

Index Terms—Supercomputer, Scheduling, Swarm

Intelligence, Instance-Based Learning, Runtime estimation.

I. INTRODUCTION

With the advancement in technology, many high-speed

computing techniques have emerged. Applications

unimaginable in past few years has now become achievable.

Owing to the development on Internet applications [1] and

new computing schemes, scenarios such as cloud computing

[2] and parallel computing [3] have come into play and

resulted in dramatic improvements in high-speed computation

[4-6]. Consequently, new fields of studies such as big data

analysis and artificial intelligence have started to thrive.

Supercomputer, a high-level performance computer, consists

of tens of thousands of processors that are capable of

performing billions to trillions of calculations per second and

achieving massive computing power is, without doubt, the

indispensable role in the unstoppable trend of high-speed

computing evolution. Therefore, efficiently improving

performance on a supercomputer would be without doubt a

vital issue. Many institutions have started to increasingly add

computing cores to achieve higher computation performance.

However, [7] shows that simply expanding the number of

processing nodes and leveraging technology scaling would

not be an efficient way to improve the processing power of

supercomputers, as power demand would increase

unsustainably. To improve supercomputer’s running efficacy,

many researchers have devoted full effort into supercomputer

scheduling [8-11], coming up with various scheduling

schemes to enhance the overall performance of the

F.P.C. Lin was with the Graduate Institute of Communication

Engineering, National Taiwan University, Taipei 10617, Taiwan. (e-mail:

frank555076@gmail.com).

F. K. H. Phoa is with the Institute of Statistical Science, Academia Sinica,

Taipei 11529, Taiwan (e-mail: fredphoa@stat.sinica.edu.tw).

supercomputer without the need of setting up additional

hardware.

Before designing the scheduling scheme, an important

factor in scheduling performances is the runtime estimation. It

is an important attribute used by the schedulers in various

scenarios. Its accuracy is proved to be highly correlated with

scheduling performances by [12]. Researchers have been

working thoroughly on this topic [13-16], trying to come up

with different solutions to provide accurate estimates of

runtime data. It would be important to have good domain

knowledge and insight with their own runtime data to improve

the accuracy of estimation. This work applies the data offered

by the supercomputer, Advanced Large-scale Parallel

Supercluster (ALPS) in National Center for

High-Performance Computing (NCHC) in Taiwan.

As the need for large computation keeps increasing, large

traffic workload has gradually become a burden for ALPS. To

handle this issue, this work provides two major contributions.

First, an accurate runtime estimation scheme based on the

analysis of a large historical data from ALPS is proposed

using Instance-Based Learning (IBL) [17]. Second, a new

scheduling scheme for supercomputers on large traffic load

using Swarm Intelligence is designed.

A scheduling scheme is a critical factor to the performance

of a supercomputer. Many researchers have as well

concentrated on the design of supercomputer scheduling

trying to obtain a suitable approach in the optimization of

various goals. Due to the attractiveness in simplicity,

effectiveness, and fairness, the most common used strategy in

supercomputer scheduling is FCFS (First-Come First Served)

with backfilling, also known as the term EASY (Extensible

Argonne Scheduling sYstem). Although easy to implement,

job scheduling on supercomputers, however, can be

complicated due to diverse demands of system administrators

and may not be enough to be effectively approached by

simply applying EASY. In fact, runtime efficiency and

fairness are usually conflicting goals to be achieved. The

inefficiency becomes evident especially when the workload is

large. Therefore, to both consider the runtime efficiency and

user fairness comprehensively while preserving the feature of

simple implementation in EASY, a heterogeneous

non-preemptible scheduling scheme to obtain a real-time

scheduling on large traffic workload is proposed. This work

designs a Swarm Intelligence Based Scheduling (SIBS)

method to optimize the performance and achieve both

efficiencies on total runtime makespan and fair resource

allocation.

The rest of the paper is organized as follows. In Section II

background knowledge on IBL and original SIB optimization

are provided. Section III presents the design of IBL runtime

estimation, based on data from ALPS, and the modified SIB

Runtime Estimation and Scheduling on Parallel Processing

Supercomputers via Instance-based Learning and Swarm

Intelligence

Frank Po-Chen Lin and Frederick Kin Hing Phoa

mailto:tingchulee@gmail.com

for resource-constrained job scheduling. In Section IV, the

simulation setup is described and the result of the proposal is

evaluated. Finally, Section V concludes the paper and

outlines the contribution of this work.

II. BACKGROUND

To provide an efficient approach to improve the

performance of a supercomputer, both runtime estimation,

and job scheduling should not only be operative but also

computationally effective. For runtime estimation, global

parametric learning algorithms, such as neural networks,

attempt to establish an input-output mapping via a single

function with a global network view. However, this would

neglect important properties of data partitions when the input

is highly correlated to local data, which is often the case for

runtime estimation. This work found IBL most suitable and

perform good results of our estimates. For scheduling, classic

optimization approaches such as nonlinear programming or

dynamic programming can compute the exact solution and

have better accuracy but are computationally time-consuming

when the large-scale problem is considered. Therefore, this

research designs a metaheuristic approaches SIB that gives

near-optimal answers but is computationally efficient.

A. Instance-Based Learning

Runtime prediction of new input data is formed through past

related experiences in the historical database. Experiences

consist of several input features and one output result. Every

input features depict the characteristics of the data while the

output describes the runtime result corresponding to the

conditions of these features. New input data consists of only

input features whereas its runtime prediction is formed based

on these features. Instead of querying the entire experiences in

the database to form a prediction, only past experiences with

high correlated input features are used as training sets to

provide runtime estimation through similarity calculation.

This allows an estimate to preserve useful local information

and filter out unrelated information that would degrade the

performance of accuracy.

IBL can be categorized into two major parts: similarity

calculation and kernel regression. In similarity calculation, a

distance function is defined as an indicator of similarity

between two data according to the feature of the attributes. In

kernel regression, a weighted-distance average of output is

provided for final runtime prediction. The weights given to

different runtimes are defined by the kernel function. The

kernel function determines the weights on a given runtime

data according to the measured similarity between input and

historical experiences.

1) Distance Function

The distance function for similarity measure is defined as

1

1

(,)

n f f

f ij ijf

ij n f

f ijf

w d
d d i j

w

, (1)

where is the feature, is its weight,

1, if feature exists in both data

0, otherwise

f

ij

f

, (1-1)

(,), if nominal

(,), if numerical

ff

ij

f

overlap i j
d

avediff i j

, (1-2)

where

0,
(,)

1, otherwise

f f

f

i j
overlap i j

(,)
max min

f f

f

f f

i j
avediff i j

2) Kernel Function

Kernel function provides the result of predicted runtime

estimates through similarities obtained from distance

function and is formulated as

((,))
()

((,))

ji

R

i

K d i j R
E i

K d i j

, (2)

where is the actual runtime of related experience and

 is the exponential kernel function used to derive the

weight for runtime shown below.

2

() exp()K d d . (3)

B. Swarm Intelligence Optimization

The concept of Swarm Intelligence has been applied to

many different applications [18]. The idea of the SIB

algorithm in depicted in Figure 1.

Fig. 1. SIB Algorithm

In the step of initialization, possible solutions are generated

as initial particles and the objective values for these particles

are evaluated. Through evaluation, each particle perceives its

own location of initial optimum in the search space called

Local Best (LB) particles. All particles share information by

comparing its LB with other to obtain the overall optimum

called Global Best (GB) particle. For particles to collectively

arrive at the perceived overall optimum solution, they go

through the steps of MIX and MOVE operations iteratively

after initialization. In the MIX operation, particle

exchanges elements with LB and GB particles to form new

particles mixed LB and mixed GB respectively. In the MOVE

operation, the objective value of mixed GB, mixed LB, and

particle are evaluated. A particle with better objective value

is chosen to replace particle . However, if both mixed GB

and mixed LB do not make particle move toward a better

location in the search space, elements in particle would be

replaced with any random particle as a prevention of being

trapped in a locally optimal solution. GB and LBs are updated

if any better solutions are found. LB particles and GB particle

are updated continuously in every iteration until the stopping

criterion is fulfilled. The stopping criteria can be the reach of

either the pre-specified maximum number of iterations or a

known optimal value of the GB particle.

III. RUNTIME ESTIMATION AND JOB SCHEDULING ON

SUPERCOMPUTERS

This section introduces the method of runtime estimation

on user workloads using IBL and describes a newly designed

SIB scheduling algorithm for supercomputers.

A. Job Runtime Estimation

This work evaluates the prediction technique using data

from the ALPS supercomputer system. Characteristics of

execution jobs in ALPS have shown in Table I.

TABLE I: FEATURE OF WORKLOADS

Input Features

Feature Feature Feature

User ID User ID User ID

Queue Name Queue

Name

Queue Name

Job Name Job

Name

Job Name

Number of

CPU Cores
Number

of CPU

Cores

Number of CPU Cores

Submit Time Submit

Time
Submit Time

Output Feature

Feature Feature Feature

Runtime Runtime Runtime

Through correlation analysis, a strong degree of

dependency between jobs summited by users and the runtime

feature can be found. As a result, the search space of every

new input data is separated into various partitions according

to different users. For instance, if user 1 submits a new job to

the system to perform IBL prediction, the system only

considers user 1’s historical experiences as a relevant dataset

for runtime estimation. This not only preserves data locality

but also decreases the search space to perform similarity

computation, which would cause huge computation burden

when the entire dataset is considerably large.

After deciding the relevant dataset of user 1, the distance

function between input data and all experiences in the dataset

are calculated. All distance metrics are now available for the

next step. Finally, nearest neighbors with the lowest values

of distances are chosen. The runtime prediction of the newly

submitted job is determined by these nearest neighbors

using the kernel function.

The estimation procedure can be generalized into four

major steps upon receiving a new job request:

1) Dataset Determination

 The identity of job submitter is first determined.

Afterward, the submitter’s past experiences are chosen as the

relevant dataset to perform IBL.

2) Similarity computation

 The similarity metric between features from the new input

and its corresponding experiences in the relevant dataset is

computed with the distance function.

3) K-Nearest Neighbors

After acquiring all similarity metrics, experiences with

the lowest similarity values are selected as the final dataset to

perform runtime prediction. Through simulations, the results

show that the estimation provides great accuracy when only

three nearest experiences (=3) are selected as the final

dataset. This decision of the parameter narrows down the

estimation complexity without compromising the overall

accuracy.

4) Runtime Estimate

The kernel function takes the experiences in the final

dataset as input and comes out with the runtime estimation

result for the input data.

B. Swarm Intelligence based Scheduling

In previous researches, like most of the evolutionary

algorithms, SIB optimization focused on unconstrained and

non-ordering problems. In supercomputer scheduling,

however, resource constraints on remaining supercomputer

cores needs consideration. Every scheduling decision should

concern the availability of cores in every time slot in order to

make full use of the resources and result in an efficient job

schedule that reduces the total operating time.

Under busy traffic conditions, job arrivals are large and

have to wait in the queue for processing. The scheduler

reschedules the arrival jobs in every time units.

During , the scheduler awaits for new arrivals while

the supercomputer simultaneously provides operations on

previously arrived jobs. To provide scheduling efficiency, the

setting of has to satisfy two conditions. First, it has to

be larger than the total makespan of previous

assigned jobs in the system so the supercomputer would not

be waiting without serving any jobs. Second, it should be

large enough for a certain amount of new jobs to arrive so that

the scheduling result would be influential enough to upgrade

system’s performance. To satisfy the above-mentioned

criteria, the relationship of and satisfies

update

makespan

t
t

 , (4)

where is the average arrival rate of jobs and is the average

amount of finishing workloads in the one-time unit. It is clear

that Equation 4 would be easily satisfied under busy traffic

conditions when is larger than .

In this research, the objective of a scheduling decision is to

minimize total waiting time of all user-submitted jobs. This

objective ensures fairness on waiting time for different jobs is

considered while improving system’s performance on total

operation time. While being processed, the job requires

processing cores and units of processing time with job

starting time . The total amount of available cores in the

supercomputer is denoted as . The optimization problem

can be formulated as follows.

()

min (), (); {0,1}.

() , 0.

. .

, , 0, ().

i i update

i

c

i c

i A t

c

i i i

t d t i S t

r t R t

s t

t d r i S t

(5)

where is the set of all submitted jobs during the time

interval .

Jobs being assigned after would only be scheduled

on the supercomputer in the next scheduling session.

Therefore, to enhance the fairness of the waiting time of all

jobs. is added as a penalty factor to the objective

value for assigning any jobs after .

In order to solve the constrained optimization problem, this

work designs a new particle formation and a novel MIX

operation for SIB scheduling. In SIB scheduling, every

particle is designed to represent a list of scheduling priority

and every element in a particle represents a job ID. Every

particle’s performance is evaluated by decoding the priority

list into job schedules through the parallel scheduling

generation scheme. In this research, the idea of particle

transformation is applied due to its merit that the scheduling

result decoded from particles after MIX and MOVE is still

feasible to construct a resource feasible project schedule.

1) Parallel Scheduling Generation Scheme

A parallel scheduling generation scheme iterates over the

time stamp of projects and adds jobs that are eligible to the

schedule. Scheduling starts at the time point and

schedules jobs before the time pointer is increased. It selects a

job at each decision point from the eligible job set and

assigns a scheduling sequence of these eligible jobs according

to the priority list in each particle. The pseudo-code of the

scheme is as follows:

Algorithm 1 Parallel Schedule Generation Scheme

Initialize: , , ,

while do

 Calculate: , , ,

 while do

 Select the first job

 Calculate: , ,

 end while

end while

.

where the complete set contains all jobs that have been

scheduled and completed before and the active set

contains all scheduled but unfinished jobs. corresponds to

the finishing time of the job , where is the remaining

core available at the time so that

.

2) MIX Operation for SIB Scheduling

Instead of exchanging particle elements with LB and GB,

new particles are formed through the idea of imitation. During

MIX operation, every particle imitates the priority order of

a good particle (LB or GB) starting from the first element. In

every iteration, a position and job ID of the element of the

good particle is perceived. Particle searches its own

elements to find the index that contains the value . After

finding the corresponding index, particle swaps the job ID

in that index with the initially perceived position in the good

particle. The pseudocode of the MIX is shown below. The

 returns the index of

 that contains the value .

Algorithm 2 MIX Operation in SIB Scheduling

Initialize:

while do

end while

IV. SIMULATION

The simulation performed in this section is carried out by a

SIB program written in R. This section evaluates the

performance of the proposed runtime prediction technique

and the efficiency of SIB supercomputer scheduling using

data from the ALPS supercomputer. Workloads from January

to December 2016 with the total amount of 804697 data are

used to evaluate the designs in this work.

A. Runtime Prediction Evaluation

In the simulation, the training workload consists of 563287

experiences and the testing workload contains 241410

inserting data. The performance of the proposed runtime

prediction is evaluated using Root-Mean-Squared Error

(RMSE) indicator as shown in Table II.

The runtime prediction scheme provides an average

estimation error of 20.73 minutes with a standard deviation of

33.82 minutes. The best estimation error can be achieved

below 1 minute, while the error in the worst case is bounded

by 151.58 minutes. The result shows that the prediction

provides good accuracy on runtime estimation.

TABLE II: RMSE OF RUNTIME PREDICTION

RMSE Estimation (minutes)

Mean RMSE SD RMSE Worst

RMSE

Best RMSE

20.73 (m) 33.82 (m) 151.58 (m) 0.22 (m)

B. SIB Scheduling Evaluation

The performance of the SIB scheduling design is compared

with the EASY scheduling scheme. New inserting jobs are

sampled from the 241410 testing data workloads. The

scheduling schemes use the estimated time from IBL runtime

prediction to determine their schedules. The total makespan

of the actual execution time of the works between two

different designs is evaluated as the indicator of scheduling

performance. In order to examine the efficacy of the

scheduling design under every condition of busy traffic, the

worst case, that is , is considered in the

simulation.

The performance between different amounts of sampled

workloads and total makespans for two different scheduling

schemes is demonstrated. The impact of the number of initial

particles on the SIB scheduling performance is also shown in

Figure 2ab. The performance on the makespan of job arrivals

of SIB scheduling outperforms the EASY scheduling scheme.

Moreover, as the number of the initial particles (seed)

increases, the scheduling performance of the SIB upgrades to

a higher level. The performance of SIB scheduling on a

supercomputer is proved to be efficient.

Fig 2(a). SIB versus EASY at 50 seeds.

Fig. 2(b). SIB versus EASY at 100 seeds.

Fig. 2(c). SIB versus EASY at 150 seeds.

As shown in Fig. 2(a) to Fig. 2(c), the performance on the

makespan of job arrivals of SIB scheduling outperforms the

EASY scheduling scheme. Moreover, as the number of the

initial particles (seeds) increases, the scheduling performance

of the SIB upgrades to a higher level. The performance of SIB

scheduling on a supercomputer is proved to be efficient.

V. CONCLUSIONS

To improve supercomputer’s running efficiency, it is

important to both upgrade the accuracy of runtime prediction

and enhances the efficiency of the scheduling algorithm,

while maintaining the system to work below a certain

complexity level. This work designs a runtime prediction

scheme and a novel scheduling algorithm via instance-based

learning and Swarm Intelligence. Both designs require little

computation efforts compared to classic neural network

learning and convex optimizations.

The instance-based learning runtime estimation scheme is

proposed based on the characteristics of the data in the ALPS

supercomputer to improve the accuracy of prediction while

the new swarm intelligence scheduling algorithm is designed

to optimize the performance and achieve both efficiency on

runtime makespan and fair resource allocation on

supercomputers under busy traffic conditions.

VI. ACKNOWLEDGEMENT

 This work was supported in part by the Career

Development Award of Academia Sinica (Taiwan) Grant

Number 103-CDA-M04 and the Ministry of Science and

Technology (Taiwan) Grant Number

105-2118-M-001-007-MY2.

REFERENCES

[1] S. H. Wang, F. P. C. Lin, and C. P. Li, "Secure channel estimation

method in TDD OFDM systems," in 2016 IEEE International

Symposium on Broadband Multimedia Systems and

Broadcasting (BMSB), 2016, pp. 1-4.

[2] A. Goyal and S. Dadizadeh, "A survey on cloud computing,"

University of British Columbia Technical Report for CS, vol.

508, pp. 55-58, 2009.

[3] F. P.-C. Lin and F. K. H. Phoa, "A Performance Study of Parallel

Programming via CPU and GPU on Swarm Intelligence Based

Evolutionary Algorithm," presented at the Proceedings of the

2017 International Conference on Intelligent Systems,

Metaheuristics & Swarm Intelligence, Hong Kong, Hong Kong,

2017.

[4] Y. A. Basallo, V. E. Senti, and N. M. Sanchez, "Artificial

intelligence techniques for information security risk assessment,"

IEEE Latin America Transactions, vol. 16, no. 3, pp. 897-901,

2018.

[5] A. v. d. Mei and J. P. Doomernik, "Artificial intelligence

potential in power distribution system planning," CIRED - Open

Access Proceedings Journal, vol. 2017, no. 1, pp. 2115-2117,

2017.

[6] S. Liu, Y. Wang, M. Fardad, and P. K. Varshney, "A

Memristor-Based Optimization Framework for Artificial

Intelligence Applications," IEEE Circuits and Systems Magazine,

vol. 18, no. 1, pp. 29-44, 2018.

[7] F. Fraternali, A. Bartolini, C. Cavazzoni, and L. Benini,

"Quantifying the Impact of Variability and Heterogeneity on the

Energy Efficiency for a Next-Generation Ultra-Green

Supercomputer," IEEE Transactions on Parallel and Distributed

Systems, vol. 29, no. 7, pp. 1575-1588, 2018.

[8] D. Tsafrir, Y. Etsion, and D. G. Feitelson, "Backfilling Using

System-Generated Predictions Rather than User Runtime

Estimates," IEEE Transactions on Parallel and Distributed

Systems, vol. 18, no. 6, pp. 789-803, 2007.

[9] W. Tang, D. Ren, Z. Lan, and N. Desai, "Toward balanced and

sustainable job scheduling for production supercomputers,"

Parallel Computing, vol. 39, no. 12, pp. 753-768, 2013/12/01/

2013.

[10] D. Tsafrir and צפריר .ד, Modeling, evaluating, and improving the

performance of supercomputer scheduling. Hebrew University,

2006.

[11] M. F. Tompkins, "Optimization techniques for task allocation

and scheduling in distributed multi-agent operations,"

Massachusetts Institute of Technology, 2003.

[12] D. Tsafrir and D. G. Feitelson, "The Dynamics of Backfilling:

Solving the Mystery of Why Increased Inaccuracy May Help," in

2006 IEEE International Symposium on Workload

Characterization, 2006, pp. 131-141.

[13] D. Tsafrir, Y. Etsion, and D. G. Feitelson, "Modeling User

Runtime Estimates," in Job Scheduling Strategies for Parallel

Processing, Berlin, Heidelberg, 2005, pp. 1-35: Springer Berlin

Heidelberg.

[14] S. Krishnaswamy, S. W. Loke, and A. Zaslavsky, "Estimating

computation times of data-intensive applications," IEEE

Distributed Systems Online, vol. 5, no. 4, p. 1, 2004.

[15] W. Tang, N. Desai, D. Buettner, and Z. Lan, "Job scheduling with

adjusted runtime estimates on production supercomputers,"

Journal of Parallel and Distributed Computing, vol. 73, no. 7,

pp. 926-938, 2013/07/01/ 2013.

[16] M. A. Iverson, F. Ozguner, and L. C. Potter, "Statistical

prediction of task execution times through analytic

benchmarking for scheduling in a heterogeneous environment,"

in Heterogeneous Computing Workshop, 1999. (HCW '99)

Proceedings. Eighth, 1999, pp. 99-111.

[17] W. Smith, "Prediction Services for Distributed Computing," in

2007 IEEE International Parallel and Distributed Processing

Symposium, 2007, pp. 1-10.

[18] F. P. C. Lin and F. K. H. Phoa, "An Efficient Construction of

Confidence Regions via Swarm Intelligence and Its Application

in Target Localization," IEEE Access, vol. 6, pp. 8610-8618,

2018.

Frank Po-Chen Lin received the B.S. degree in

electrical engineering from National Sun Yat-sen

University, Taiwan, in 2016 and the M.S. degree from

National Taiwan University, Taiwan in 2018. He is a

Research Assistant with the Institute of Statistical

Science, Academia Sinica. His current research

interests include software defined networking,

scheduling algorithm designs, parallel computing and

supercomputing. He was a recipient of the College

Student Research Creativity Award in the Ministry of Science and

Technology, Taiwan, in 2016.

Frederick Kin Hing Phoa received the Ph.D. degrees

in statistics from the University of California at Los

Angeles (UCLA), Los Angeles, CA, USA, in 2009.

From 2009 to 2013, he was an Assistant Research

Fellow with the Institute of Statistical Science,

Academia Sinica, Taiwan, where he was promoted to

an Associate Research Fellow, in 2013. He is an author

of over 50 scientific articles, a speaker of over 90

invited talks in the international conferences and 60

seminar talks in the universities around the world. His research interests

include design and analysis of physical, computer and network experiments,

analysis of internet and social media data, network data analysis,

nature-inspired metaheuristics optimization, big data analysis, stochastic

control in large-scale systems, semiparametric methods to the data with

missing covariates, deep learning and neural network modeling. Dr. Phoa

was a recipient of the Career Development Award in 2014, the Ta-You Wu

Memorial Award (the Young Researcher Award) in 2014, and the Best Paper

Award in the World Congress of Engineering in 2015. He was a recipient of

the Special Talent Researcher Award from 2012 to 2017. He received the

Excellent Young Researcher Project from 2013 to 2016 supported by the

Ministry of Science and Technology (MOST), Taiwan, and the International

Cost-Share Exchanges Scheme Project from 2016 to 2018 between the

MOST and the Royal Society of U.K.

