
  

 

Abstract—Supercomputing has been indispensable in the 

unstoppable trend of high-speed computing evolution. This 

work aims at improving its running efficacy by introducing a 

new two-step scheduling approach. Based on the analysis of 

large historical data, we provide an accurate runtime estimation 

scheme using Instance-Based Learning (IBL) in the first step. 

Then a swarm intelligence based scheduling (SIBS) method is 

proposed to optimize the scheduling performance in terms of 

total runtime makespan and fair resource allocation. A method 

comparison on a dataset from the ALPS supercomputer, which 

consists of 804k workload data in 2016, shows that our proposed 

method outperforms the most commonly used strategy – 

Extensible Argonne Scheduling System (EASY). 

 
Index Terms—Supercomputer, Scheduling, Swarm 

Intelligence, Instance-Based Learning, Runtime estimation.  

 

I. INTRODUCTION 

With the advancement in technology, many high-speed 

computing techniques have emerged. Applications 

unimaginable in past few years has now become achievable. 

Owing to the development on Internet applications [1] and 

new computing schemes, scenarios such as cloud computing 

[2] and parallel computing [3] have come into play and 

resulted in dramatic improvements in high-speed computation 

[4-6]. Consequently, new fields of studies such as big data 

analysis and artificial intelligence have started to thrive. 

Supercomputer, a high-level performance computer, consists 

of tens of thousands of processors that are capable of 

performing billions to trillions of calculations per second and 

achieving massive computing power is, without doubt, the 

indispensable role in the unstoppable trend of high-speed 

computing evolution. Therefore, efficiently improving 

performance on a supercomputer would be without doubt a 

vital issue. Many institutions have started to increasingly add 

computing cores to achieve higher computation performance. 

However, [7] shows that simply expanding the number of 

processing nodes and leveraging technology scaling would 

not be an efficient way to improve the processing power of 

supercomputers, as power demand would increase 

unsustainably. To improve supercomputer’s running efficacy, 

many researchers have devoted full effort into supercomputer 

scheduling [8-11], coming up with various scheduling 

schemes to enhance the overall performance of the 
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supercomputer without the need of setting up additional 

hardware. 

Before designing the scheduling scheme, an important 

factor in scheduling performances is the runtime estimation. It 

is an important attribute used by the schedulers in various 

scenarios. Its accuracy is proved to be highly correlated with 

scheduling performances by [12]. Researchers have been 

working thoroughly on this topic [13-16], trying to come up 

with different solutions to provide accurate estimates of 

runtime data. It would be important to have good domain 

knowledge and insight with their own runtime data to improve 

the accuracy of estimation. This work applies the data offered 

by the supercomputer, Advanced Large-scale Parallel 

Supercluster (ALPS) in National Center for 

High-Performance Computing (NCHC) in Taiwan.  

As the need for large computation keeps increasing, large 

traffic workload has gradually become a burden for ALPS. To 

handle this issue, this work provides two major contributions. 

First, an accurate runtime estimation scheme based on the 

analysis of a large historical data from ALPS is proposed 

using Instance-Based Learning (IBL) [17]. Second, a new 

scheduling scheme for supercomputers on large traffic load 

using Swarm Intelligence is designed.  

A scheduling scheme is a critical factor to the performance 

of a supercomputer. Many researchers have as well 

concentrated on the design of supercomputer scheduling 

trying to obtain a suitable approach in the optimization of 

various goals. Due to the attractiveness in simplicity, 

effectiveness, and fairness, the most common used strategy in 

supercomputer scheduling is FCFS (First-Come First Served) 

with backfilling, also known as the term EASY (Extensible 

Argonne Scheduling sYstem). Although easy to implement, 

job scheduling on supercomputers, however, can be 

complicated due to diverse demands of system administrators 

and may not be enough to be effectively approached by 

simply applying EASY. In fact, runtime efficiency and 

fairness are usually conflicting goals to be achieved. The 

inefficiency becomes evident especially when the workload is 

large. Therefore, to both consider the runtime efficiency and 

user fairness comprehensively while preserving the feature of 

simple implementation in EASY, a heterogeneous 

non-preemptible scheduling scheme to obtain a real-time 

scheduling on large traffic workload is proposed. This work 

designs a Swarm Intelligence Based Scheduling (SIBS) 

method to optimize the performance and achieve both 

efficiencies on total runtime makespan and fair resource 

allocation.  

The rest of the paper is organized as follows. In Section II 

background knowledge on IBL and original SIB optimization 

are provided. Section III presents the design of IBL runtime 

estimation, based on data from ALPS, and the modified SIB 
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for resource-constrained job scheduling. In Section IV, the 

simulation setup is described and the result of the proposal is 

evaluated. Finally, Section V concludes the paper and 

outlines the contribution of this work. 

 

II. BACKGROUND 

To provide an efficient approach to improve the 

performance of a supercomputer, both runtime estimation, 

and job scheduling should not only be operative but also 

computationally effective. For runtime estimation, global 

parametric learning algorithms, such as neural networks, 

attempt to establish an input-output mapping via a single 

function with a global network view. However, this would 

neglect important properties of data partitions when the input 

is highly correlated to local data, which is often the case for 

runtime estimation. This work found IBL most suitable and 

perform good results of our estimates. For scheduling, classic 

optimization approaches such as nonlinear programming or 

dynamic programming can compute the exact solution and 

have better accuracy but are computationally time-consuming 

when the large-scale problem is considered. Therefore, this 

research designs a metaheuristic approaches SIB that gives 

near-optimal answers but is computationally efficient. 

 

A. Instance-Based Learning 

Runtime prediction of new input data is formed through past 

related experiences in the historical database. Experiences 

consist of several input features and one output result. Every 

input features depict the characteristics of the data while the 

output describes the runtime result corresponding to the 

conditions of these features. New input data consists of only 

input features whereas its runtime prediction is formed based 

on these features. Instead of querying the entire experiences in 

the database to form a prediction, only past experiences with 

high correlated input features are used as training sets to 

provide runtime estimation through similarity calculation. 

This allows an estimate to preserve useful local information 

and filter out unrelated information that would degrade the 

performance of accuracy.  

IBL can be categorized into two major parts: similarity 

calculation and kernel regression. In similarity calculation, a 

distance function is defined as an indicator of similarity 

between two data according to the feature of the attributes. In 

kernel regression, a weighted-distance average of output is 

provided for final runtime prediction. The weights given to 

different runtimes are defined by the kernel function. The 

kernel function determines the weights on a given runtime 

data according to the measured similarity between input and 

historical experiences. 

1) Distance Function 

The distance function for similarity measure is defined as 
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2) Kernel Function 

Kernel function provides the result of predicted runtime 

estimates  through similarities obtained from distance 

function and is formulated as 
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where  is the actual runtime of related experience  and 

 is the exponential kernel function used to derive the 

weight for runtime  shown below. 
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B. Swarm Intelligence Optimization 

The concept of Swarm Intelligence has been applied to 

many different applications [18]. The idea of the SIB 

algorithm in depicted in Figure 1. 
 

 
Fig. 1. SIB Algorithm 



  

 

In the step of initialization, possible solutions are generated 

as initial particles and the objective values for these particles 

are evaluated. Through evaluation, each particle perceives its 

own location of initial optimum in the search space called 

Local Best (LB) particles. All particles share information by 

comparing its LB with other to obtain the overall optimum 

called Global Best (GB) particle. For particles to collectively 

arrive at the perceived overall optimum solution, they go 

through the steps of MIX and MOVE operations iteratively 

after initialization. In the MIX operation, particle  

exchanges elements with LB and GB particles to form new 

particles mixed LB and mixed GB respectively. In the MOVE 

operation, the objective value of mixed GB, mixed LB, and 

particle  are evaluated. A particle with better objective value 

is chosen to replace particle . However, if both mixed GB 

and mixed LB do not make particle  move toward a better 

location in the search space, elements in particle  would be 

replaced with any random particle as a prevention of being 

trapped in a locally optimal solution. GB and LBs are updated 

if any better solutions are found. LB particles and GB particle 

are updated continuously in every iteration until the stopping 

criterion is fulfilled. The stopping criteria can be the reach of 

either the pre-specified maximum number of iterations or a 

known optimal value of the GB particle. 

 

III. RUNTIME ESTIMATION AND JOB SCHEDULING ON 

SUPERCOMPUTERS 

This section introduces the method of runtime estimation 

on user workloads using IBL and describes a newly designed 

SIB scheduling algorithm for supercomputers. 

A. Job Runtime Estimation 

This work evaluates the prediction technique using data 

from the ALPS supercomputer system. Characteristics of 

execution jobs in ALPS have shown in Table I. 

 
TABLE I: FEATURE OF WORKLOADS 

 

Input Features 

Feature Feature Feature 

User ID User ID User ID 

Queue Name Queue 

Name 

Queue Name 

Job Name Job 

Name 

Job Name 

Number of  

CPU Cores 
Number 

of  CPU 

Cores 

Number of  CPU Cores 

Submit Time Submit 

Time 
Submit Time 

Output Feature 

Feature Feature Feature 

Runtime Runtime Runtime 

 

Through correlation analysis, a strong degree of 

dependency between jobs summited by users and the runtime 

feature can be found. As a result, the search space of every 

new input data is separated into various partitions according 

to different users. For instance, if user 1 submits a new job to 

the system to perform IBL prediction, the system only 

considers user 1’s historical experiences as a relevant dataset 

for runtime estimation. This not only preserves data locality 

but also decreases the search space to perform similarity 

computation, which would cause huge computation burden 

when the entire dataset is considerably large.  

After deciding the relevant dataset of user 1, the distance 

function between input data and all experiences in the dataset 

are calculated. All distance metrics are now available for the 

next step. Finally,  nearest neighbors with the lowest values 

of distances are chosen. The runtime prediction of the newly 

submitted job is determined by these  nearest neighbors 

using the kernel function.  

The estimation procedure can be generalized into four 

major steps upon receiving a new job request: 

1) Dataset Determination  

      The identity of job submitter is first determined. 

Afterward, the submitter’s past experiences are chosen as the 

relevant dataset to perform IBL. 

2) Similarity computation 

      The similarity metric between features from the new input 

and its corresponding experiences in the relevant dataset is 

computed with the distance function. 

3) K-Nearest Neighbors 

After acquiring all similarity metrics,  experiences with 

the lowest similarity values are selected as the final dataset to 

perform runtime prediction. Through simulations, the results 

show that the estimation provides great accuracy when only 

three nearest experiences ( =3) are selected as the final 

dataset. This decision of the parameter  narrows down the 

estimation complexity without compromising the overall 

accuracy. 

4) Runtime Estimate 

The kernel function takes the experiences in the final 

dataset as input and comes out with the runtime estimation 

result for the input data.  

B. Swarm Intelligence based Scheduling 

In previous researches, like most of the evolutionary 

algorithms, SIB optimization focused on unconstrained and 

non-ordering problems. In supercomputer scheduling, 

however, resource constraints on remaining supercomputer 

cores needs consideration. Every scheduling decision should 

concern the availability of cores in every time slot in order to 

make full use of the resources and result in an efficient job 

schedule that reduces the total operating time.  

Under busy traffic conditions, job arrivals are large and 

have to wait in the queue for processing. The scheduler 

reschedules the arrival jobs in every  time units. 

During , the scheduler awaits for new arrivals while 

the supercomputer simultaneously provides operations on 

previously arrived jobs. To provide scheduling efficiency, the 

setting of  has to satisfy two conditions. First, it has to 

be larger than the total makespan  of previous 

assigned jobs in the system so the supercomputer would not 

be waiting without serving any jobs. Second, it should be 

large enough for a certain amount of new jobs to arrive so that 

the scheduling result would be influential enough to upgrade 

system’s performance. To satisfy the above-mentioned 

criteria, the relationship of  and  satisfies  
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where  is the average arrival rate of jobs and  is the average 

amount of finishing workloads in the one-time unit. It is clear 

that Equation 4 would be easily satisfied under busy traffic 

conditions when  is larger than . 

In this research, the objective of a scheduling decision is to 

minimize total waiting time of all user-submitted jobs. This 

objective ensures fairness on waiting time for different jobs is 

considered while improving system’s performance on total 

operation time. While being processed, the job  requires  

processing cores and  units of processing time with job 

starting time . The total amount of available cores in the 

supercomputer is denoted as . The optimization problem 

can be formulated as follows.  
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where  is the set of all submitted jobs during the time 

interval .  

Jobs being assigned after  would only be scheduled 

on the supercomputer in the next scheduling session. 

Therefore, to enhance the fairness of the waiting time of all 

jobs.  is added as a penalty factor to the objective 

value for assigning any jobs after . 

In order to solve the constrained optimization problem, this 

work designs a new particle formation and a novel MIX 

operation for SIB scheduling. In SIB scheduling, every 

particle is designed to represent a list of scheduling priority 

and every element in a particle represents a job ID. Every 

particle’s performance is evaluated by decoding the priority 

list into job schedules through the parallel scheduling 

generation scheme. In this research, the idea of particle 

transformation is applied due to its merit that the scheduling 

result decoded from particles after MIX and MOVE is still 

feasible to construct a resource feasible project schedule. 

1) Parallel Scheduling Generation Scheme 

A parallel scheduling generation scheme iterates over the 

time stamp of projects and adds jobs that are eligible to the 

schedule. Scheduling starts at the time point  and 

schedules jobs before the time pointer is increased. It selects a 

job at each decision point  from the eligible job set  and 

assigns a scheduling sequence of these eligible jobs according 

to the priority list in each particle. The pseudo-code of the 

scheme is as follows: 

 

Algorithm 1 Parallel Schedule Generation Scheme 

Initialize: , , ,  

while  do 

   

   

   Calculate: , , ,  

  while  do 

    Select the first job  

     

    Calculate: , ,  

  end while 

end while 

. 
 

where the complete set  contains all jobs that have been 

scheduled and completed before  and the active set  

contains all scheduled but unfinished jobs.  corresponds to 

the finishing time of the job , where  is the remaining 

core available at the time  so that 

. 

2) MIX Operation for SIB Scheduling 

Instead of exchanging particle elements with LB and GB, 

new particles are formed through the idea of imitation. During 

MIX operation, every particle  imitates the priority order of 

a good particle (LB or GB) starting from the first element. In 

every iteration, a position and job ID of the element  of the 

good particle is perceived. Particle  searches its own 

elements to find the index that contains the value . After 

finding the corresponding index, particle  swaps the job ID 

in that index with the initially perceived position in the good 

particle. The pseudocode of the MIX is shown below. The 

 returns the index of 

 that contains the value .  

 

Algorithm 2 MIX Operation in SIB Scheduling 

Initialize:  

while  do 

   

   

   

   

   

   

end while 

 

IV. SIMULATION 

The simulation performed in this section is carried out by a 

SIB program written in R. This section evaluates the 

performance of the proposed runtime prediction technique 

and the efficiency of SIB supercomputer scheduling using 

data from the ALPS supercomputer. Workloads from January 

to December 2016 with the total amount of 804697 data are 

used to evaluate the designs in this work. 

A. Runtime Prediction Evaluation 

In the simulation, the training workload consists of 563287 

experiences and the testing workload contains 241410 

inserting data. The performance of the proposed runtime 

prediction is evaluated using Root-Mean-Squared Error 

(RMSE) indicator as shown in Table II.  



  

The runtime prediction scheme provides an average 

estimation error of 20.73 minutes with a standard deviation of 

33.82 minutes. The best estimation error can be achieved 

below 1 minute, while the error in the worst case is bounded 

by 151.58 minutes. The result shows that the prediction 

provides good accuracy on runtime estimation. 

TABLE II: RMSE OF RUNTIME PREDICTION 

RMSE Estimation (minutes) 

Mean RMSE  SD RMSE Worst 

RMSE  

Best RMSE  

20.73 (m) 33.82 (m) 151.58 (m) 0.22 (m) 

B. SIB Scheduling Evaluation 

The performance of the SIB scheduling design is compared 

with the EASY scheduling scheme. New inserting jobs are 

sampled from the 241410 testing data workloads. The 

scheduling schemes use the estimated time from IBL runtime 

prediction to determine their schedules. The total makespan 

of the actual execution time of the works between two 

different designs is evaluated as the indicator of scheduling 

performance. In order to examine the efficacy of the 

scheduling design under every condition of busy traffic, the 

worst case, that is , is considered in the 

simulation.  

The performance between different amounts of sampled 

workloads and total makespans for two different scheduling 

schemes is demonstrated. The impact of the number of initial 

particles on the SIB scheduling performance is also shown in 

Figure 2ab. The performance on the makespan of job arrivals 

of SIB scheduling outperforms the EASY scheduling scheme. 

Moreover, as the number of the initial particles (seed) 

increases, the scheduling performance of the SIB upgrades to 

a higher level. The performance of SIB scheduling on a 

supercomputer is proved to be efficient. 

 
 

 
Fig 2(a). SIB versus EASY at 50 seeds. 

 

 
Fig. 2(b). SIB versus EASY at 100 seeds. 

 

 
Fig. 2(c). SIB versus EASY at 150 seeds. 

 

As shown in Fig. 2(a) to Fig. 2(c), the performance on the 

makespan of job arrivals of SIB scheduling outperforms the 

EASY scheduling scheme. Moreover, as the number of the 

initial particles (seeds) increases, the scheduling performance 

of the SIB upgrades to a higher level. The performance of SIB 

scheduling on a supercomputer is proved to be efficient. 

 

V. CONCLUSIONS  

To improve supercomputer’s running efficiency, it is 

important to both upgrade the accuracy of runtime prediction 

and enhances the efficiency of the scheduling algorithm, 

while maintaining the system to work below a certain 

complexity level. This work designs a runtime prediction 

scheme and a novel scheduling algorithm via instance-based 

learning and Swarm Intelligence. Both designs require little 

computation efforts compared to classic neural network 

learning and convex optimizations.  

The instance-based learning runtime estimation scheme is 

proposed based on the characteristics of the data in the ALPS 

supercomputer to improve the accuracy of prediction while 

the new swarm intelligence scheduling algorithm is designed 

to optimize the performance and achieve both efficiency on 

runtime makespan and fair resource allocation on 

supercomputers under busy traffic conditions.  
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