
IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020 265

Hierarchical Edge-Cloud SDN Controller
System With Optimal Adaptive Resource

Allocation for Load-Balancing
Frank Po-Chen Lin , Student Member, IEEE, and Zsehong Tsai , Member, IEEE

Abstract—Although the openflow-based software defined
network (SDN) architecture can ease the workload of network
control and management and separate it from the switch/routing
operations, a computation-resource limited controller can still be
congested by heavy flows and then experiences serious delay. To
enhance network scalability and reduce computation delay on
SDN networks under Quality of Service (QoS) requirements, a
hierarchical edge-cloud SDN (HECSDN) controller system design
is proposed with three features. First, by sharing computational re-
sources in the edge and the cloud, the system architecture provides
a flexible mechanism for devices to allocate their computational
tasks according to traffic loads. The second feature is to design a
queueing model of the proposed architecture. The model descrip-
tion of the networking architecture enables the network designers
to quickly estimate the performance of design without considerable
time and cost in experimental setups. Third, derived from the
queueing model, an efficient load-balancing algorithm satisfying
QoS requirements or fairness allocation for different applications
in the HECSDN architecture is proposed. This newly-developed
multi-tier controller system has been proved to be effective even
when working on a large-scale SDN, without sacrificing the
overall performance. Moreover, this system stays highly stable in
transient periods even under highly fluctuating flow arrivals.

Index Terms—Adaptive optimization, cloud computing, hierar-
chical software defined network (SDN), load-balancing, network
modeling, queuing theory.

I. INTRODUCTION

THANKS to revolutionary wired and wireless communi-
cations, new network applications, such as smart/digital

programs, intelligent sensors, and AI-based Internet-of-Things
applications have brought much more convenience to the society
than ever before. However, many applications based on the con-
ventional network architecture could not afford enough flexibil-
ity in their network management and operations. In many cases,
the architecture cannot efficiently deal with huge network sizes
or overload traffic conditions, especially if they need to provide
sufficient Quality of Service (QoS) for different delay-sensitive
applications, such as voice over Internet protocol (VoIP), video
streaming, and online games.

Manuscript received September 6, 2018; revised July 11, 2018 and December
31, 2018; accepted January 13, 2019. Date of publication February 12, 2019;
date of current version March 2, 2020. (Corresponding author: Frank Po-Chen
Lin.)

The authors are with the Graduate Institute of Communication Engineer-
ing, National Taiwan University, Taipei 10617, Taiwan (e-mail:, frank555076
@gmail.com; ztsai@ntu.edu.tw).

Digital Object Identifier 10.1109/JSYST.2019.2894689

Openflow-based software defined network (SDN) [1], [2] has
seen a very promising approach in the future landscape of the
Internet. It can help facilitate the deployment and operation of
new services [3]. The SDN can also improve network efficiency
through high level novel abstractions so as to provide dynamic
programmability for real-time centralized intelligence [4].

The SDN mainly consists of controllers and switches. When
a new network flow arrives, the switch will match the header
of the packet with flow entries and send the unmatched packet
to the controller with a packet-in message [5]. The controller
then computes the routing path for each data flow and sets the
flow table to all corresponding switches to meet the need of the
global network. This enables an SDN to simplify its network
configurations and resource management.

However, when the amount of computation requests grows
large along with the size of the network, insufficient processing
capacity of a single controller may make itself a bottleneck of
incoming traffic flows [6]. The limited processing capacity of
the controllers may result in unbearable delay under high traf-
fic demands. The performance and scalability of the controller
architecture thus become a critical problem [7], [8].

Various methodology and performance models have aimed
to enhance the scalability of SDN networks. Here, we examine
two categories of these previous works related to this paper:
Delay-reduction in SDN and scalable cloud computing.

A. Delay Reduction in SDN

Many existing SDN studies have tried different approaches
in improving end-to-end QoS, e.g., Joksch [9] formulated the
problem as a constrained shortest path problem and solved it by
using dynamic programming. Jia and Varaiya [10] discovered
the best routing path through the Bellman–Ford algorithm.

In turn, other research works focused on the load-balancing
design of multi-controllers as a way to deal with the scalabil-
ity of SDN controllers. Load-balancing of multiple controllers
can be mainly divided into two categories: centralized and dis-
tributed. For typical centralized load-balancing, Zhao et al. [11]
proposed an implementation on communication protocol in the
control plane to realize their hierarchical design of multiple con-
trollers. Ma et al. [12] presented a centralized load-balancing
mechanism to eliminate the bottleneck of the centralized control
in a network. For distributed load-balancing approaches, Zhou
et al. [13] proposed a method that allow every controller to make
load-balancing decisions locally.

1937-9234 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5456-1514
https://orcid.org/0000-0001-8736-2589
mailto:frank555076@gmail.com
mailto:frank555076@gmail.com
mailto:ztsai@ntu.edu.tw

266 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

Fig. 1. New hierarchical edge-cloud SDN controller system.

B. Scalable Cloud Computing

Cloud computing can serve as a computing architecture as
well as network design that can provide easy access to comput-
ing resources [14]. Several developments of applications have
been made possible through the aid of cloud computing. A good
case in point is mobile cloud computing [15].

Many works were initiated in this regard and extensive
surveys on cloud computing are available in the literature. For
instance, a scalable algorithm is implemented to choose a set of
near clouds that minimizes offload duration and mobile power
consumption in a two-tiered cloud architecture [16]. Ramezani
et al. [17] designed a multiobjective cloud load-balancing
technique and proposed a particle swarm optimization-genetic
algorithm that can provide good QoS for different mobile
applications. Moreover, analysis and techniques on parallel
programming and distributed computing have also been
developed to increase processing efficiency [18], [19].

In addition to the two categories of the abovementioned
works, many research works related to network performances
also focused on optimization modeling techniques for seeking
efficient solutions [20], [21]. Nevertheless, despite the amount
of abovementioned works, the integration of cloud computing
and SDN are seldom considered. Most of the solutions for en-
hancing the overall performance of SDN systems are not good
enough to satisfy the needs for different QoS. Only a few works
focused on the requirements of various applications [22]. How-
ever, in nation-wide networks, controllers are required to pro-
cess millions of flows per second without compromising the
QoS of network flows [23]. Therefore, the objective of this
paper is to help enhance network scalability and reduce com-
putation delay in SDN while providing guarantee for QoS and
fair resource allocation. For these reasons, a hierarchical edge-

cloud SDN (HECSDN) controller system is proposed in this
paper.

The HECSDN controller system has the following three fea-
tures. First, by sharing computational resources in the edge and
the cloud, the system architecture provides a flexible mecha-
nism for devices to allocate their computational tasks accord-
ing to traffic loads. Second, the queueing model of the investi-
gated SDN networking architecture enables network designers
to quickly estimate the performance of their designs without
spending considerable time for expensive experimental setups
[24]. Third, an efficient load-balancing algorithm is designed
along with the proposed queuing model to provide QoS guaran-
tee and fairness allocation for different applications.

The proposed HECSDN model can work as a basis that pro-
vides optimized formulation and adaptively minimizes the sys-
tem delay or maintains fair resource allocation according to the
status of traffic flows. Through the optimization of delay wait-
ing time in the queuing model, the best load-balancing solution
will overcome the delay bottleneck and maintain high-level QoS
for various network applications in different traffic patterns in
large-scale networks.

Later in this paper, with simulation results of several exam-
ple networks, we also validate the advantages of the proposed
HECSDN system.

II. HIERARCHICAL EDGE-CLOUD SDN CONTROLLER SYSTEM

A. System Architecture

The HECSDN controller system consists of two segments, the
edge and the cloud (see Fig. 1). The edge segment consists of two
types of controllers, forming a hierarchical control plane, which
includes the first-tier central controller and the second-tier local

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

LIN AND TSAI: HECSDN CONTROLLER SYSTEM WITH OPTIMAL ADAPTIVE RESOURCE ALLOCATION FOR LOAD-BALANCING 267

controllers. The cloud segment consists of a cloud controller and
the communication links. A cloud controller, which is a support-
ing computation resource for the purpose of load-balancing in
signal-packet processing, borrows the idea of the cloud com-
puting infrastructure and offers strong computation power in a
data center. As for the communication links, they can be further
categorized into forward links and backward links. The forward
links are in charge of flow signals and control messages sending
from the switches and the central controller to the cloud con-
troller, while the backward links take care of flow signals and
controller messages sending back to the switches and the central
controller from the cloud controller.

In operations, as signal-packets from new flows are sent from
the SDN switches to the control plane, the central controller
shall first make load-balancing decisions for signal-packets be-
tween the local controllers and the cloud controller, acting as a
dispatcher. The local controllers and the cloud controller then
deal with the processing requests of signal-packets according to
the dispatching decisions.

1) Switches and Terminals: The switches and the terminals
are shown in the lower part of Fig. 1. Each switch can support
various data flows with total of k types in the network. Flow
data-packets originating from the same source and ending in the
same destination are considered as the same data flow. In this
paper, transmission control protocol (TCP) flows are considered
to play the major role among all data flows, and the extracted
header information in first TCP packet in a data flow is the flow
signal-packet.

2) Central Controller: With the global view of traffic sta-
tus in the control plane, the central controller, which includes
a dispatcher mechanism, is responsible for managing the load
distribution of flow signals among the local controllers and the
cloud controller. The modes of the dispatcher in the central
controller can be divided into two: the delay-objective mode
and the fairness-objective mode. The delay-objective mode is
activated when the system is capable of handling all input traf-
fic loads of flow signal-packets. The dispatcher in this mode
aims to minimize total mean delay while satisfying QoS for all
network applications. The fairness-objective mode, in addition,
is activated when the total signal load is too heavy for all the
local controllers and the cloud controller to satisfy QoS require-
ments. In this mode, instead of focusing on the performance
of the overall mean delay, the objective of the dispatcher is to
provide minimax fairness allocation on delay for all network
applications to assure resource allocation fairness.

3) Local Controller: The local controllers are responsi-
ble for computing the routing path for these incoming flow
signal-packets and setting flow tables for all the corresponding
switches, from which the signal-packets arrived. Meanwhile, to
ensure that the central controller maintains the real-time traffic
status of all local controllers in the control plane, the local con-
trollers must update their own traffic conditions for the central
controller after path computation. These traffic-updates can be
classified into two fashions, reactive and proactive. In reactive
traffic updates, a controller informs its traffic status to the central
controller through a control message when being overloaded
by flow signal-packets. In proactive traffic-updates, all local

Fig. 2. System architecture of the edge-cloud queueing network.

controllers send their own traffic conditions to the central con-
troller periodically so as to ensure that every alteration in the
data flow traffic is well-considered all times.

4) Cloud Controller: As a supporting computation resource
for signal-packet processing, the cloud controller provides
strong computation capacity on the basis of cloud computing.
With the aid of the cloud controller, the system is capable of
handling larger traffic amount and significantly decreasing the
flow level of waiting time in control plane processing. For small
scale systems, the cloud controller can be just a single virtual
server operating on one virtual machine (VM). When the sys-
tem scalability is a concern, it can be extended to operate with a
large number of VMs. However, for simplicity, in the model of
this paper the cloud controller is assumed to operate on a single
VM in one remote data center.

B. System Operation

Upon the arrival of a new data flow, the SDN switch should
extract its matching fields from all protocol headers to compute
the flow key [3]. The switch then looks up its flow tables to
match an entry with the key. If the match fails, the switch fires
off a flow signal-packet and this signal-packet is forwarded to
the central controller for its dispatching decision. The signal
packets are then processed by its connected controller, which
can be either one of the local controllers or the cloud controller.
After receiving new processing requests for a period of time,
the controllers must update their own traffic status to the central
controller. If any alteration in data flow traffic patterns occurs,
or when any local and the cloud controller is overloaded, or
when the QoS requirements for current signal-packet arrivals is
no longer satisfied, the central controller then activates the load-
balancing mechanism and reassigns the workload distribution
for the signal-packets.

C. System Queueing Model

In order to design and analyze the load-balancing system, this
research models the SDN network as a queuing network (see
Fig. 2). The network model of the system is divided into two

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

268 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

Fig. 3. Queueing model of an SDN switch with service rate μs .

TABLE I
NOTATIONS OF THE SDN QUEUEING MODEL

major segments, edge, and cloud. The network model in the
edge consists of the SDN switches and local controllers. Since
the phenomenon of packet groups is a natural artifact of the TCP
so that the SDN switch is modeled as a component composed
of a M [x]/M/1 non-preemptive priority queue with service rate
μs as shown in Fig. 3.

As data-packet arrivals enter from the external traffic sources
into the switch, which performs table look-up operation, the
switch classifies the data-packet arrivals into two types, old and
new. Old arrivals correspond to data-packet flows coming from
the same source to the same destination as historical arriving
flows. For new arrivals, the signal-packets will be send to the
controllers for path computation over switch j (j � S1 where
S1 = {1,2, . . . ,m}) with rate pjλjSj .

A summary of mathematical notations is available in Table I.
After the path computation of their packets, the signal-packets
from the same flow are transferred back to the M [x]/M/1 queue
with first priority (first Priority). Flows from the data source
are considered as the arrivals with the second priority (second
Priority).

Local controller i (i � S2 where S2 = {1,2, . . . ,n}) is modeled
as an M/M/1 queue with service rate μi , which is determined
by the computational ability of controller i. Arrivals of every
controller are considered the combination of flow signals from
every switch in the network with different proportions.

Every switch sends the different proportion of the new
network flows signals into every controller for path com-
putation. The arrival rate of local controller i can be

formulated as
∑

j φij pjλjSj . In addition, the cloud consists
of the cloud controller and the communication links. The cloud
controller is modeled as an M/M/1 queue with service rate
μc . The arrival rate of the cloud controller can be written as∑

j φcj pjλjSj .
For arrivals of signal-packets sent to the cloud controller, the

total waiting time of a packet is the sum of the round trip commu-
nication delay in the links and the queuing processing delay in
the cloud controller. For arrivals sent to the local controllers, the
communication delay inside the edge is negligible for that the
distance between the control plane and the data plane is much
shorter than the edge-to-cloud distance. The edge-to-cloud dis-
tance represents the physical length of optic fiber between d the
edge and cloud controller. For the communication links in the
queueing system, two queues model the delay of link commu-
nication. The delay between edge and cloud is modeled as an
M/M/∞ queue with service rate μd . The value of μd is de-
termined by d with μd = c/d, where the packet traveling speed
c is considered as the speed of light without loss of generality.
The mathematical notations of the queueing model are given in
Table I.

III. EDGE-CLOUD SDN LOAD-BALANCING ALGORITHM

A. Edge-Cloud SDN Load-Balancing Algorithm

To enhance the sustainability and efficiency on the operation
of the network for QoS requirements and resource allocation
fairness, the ECSDN load-balancing algorithm is proposed. For
simplicity, the term original delay bound refers to the delay lim-
itations of different applications; adjusted delay bound to delay
bounds added with an additional guard interval; enlarged delay
bound to the newly assigned delay bound under the fairness
objective mode.

The central controller monitors the status of all the local con-
trollers and the cloud controller. If one of the three conditions
occurs in any of the controllers, i.e., input arrival alteration,
controller overloading, or QoS of certain application becom-
ing unsatisfied, the controller send a control message to the
central controller requesting for load assignment modifications.
Simultaneously, the other controllers are requested to send their
current traffic status to the central controller.

After receiving the traffic status from all controllers (local and
cloud), the central controller, acting as a dispatcher, determines
whether the QoS requirements of all signal-packet arrivals can
be satisfied. If QoS can be satisfied, the dispatcher operates in the
delay-objective mode. Optimization in this mode is to minimize
a combined objective consisting of the total mean delay and the
allowed additional guard interval for QoS constraints. However,
if the dispatcher finds out that the QoS cannot be satisfied under
the current traffic condition, the dispatcher moves on to oper-
ate in the fairness-objective mode. Optimization in this mode
is performed both to satisfy the original delay bound Dk of all
resource-affordable applications and to minimize the enlarged
delay bound δ for all other resource-unaffordable applications.
Mathematical formulation of the optimization problems is de-
rived in the following sections. Additional notations employed
in the optimization formulations are given in Table II.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

LIN AND TSAI: HECSDN CONTROLLER SYSTEM WITH OPTIMAL ADAPTIVE RESOURCE ALLOCATION FOR LOAD-BALANCING 269

TABLE II
ADDITIONAL NOTATIONS FOR THE OPTIMIZATION FORMULATIONS

B. Delay-Objective Optimization

When computational resource suffices, the dispatcher oper-
ates in a delay-objective mode. In this mode, the dispatcher mini-
mizes the average delay and protects the delay bounds by adding
guard intervals for all types of applications. This is achieved by
allocating appropriate portion of flow signal load message to the
local controllers and the cloud controller. The guard intervals
adjust the delay bounds of all applications by decreasing the
amount of time from the original delay bound.

As the guard interval increases, all applications receive a bet-
ter performance with reduced packet delays and overdue ratio.
To fulfill the minimax fairness criteria on the guard interval,
the delay bounds of all applications are protected with the same
amount γ. The objective function be formulated as

minimize f = β

[
∑

i

(

μi −
∑

j

φij pjλjSj

)−1

+

(

μc −
∑

j

φcj pjλjSj

)−1]

− (1 − β)γ

(1)

where
∑

i (μi −
∑

j φij pjλjSj)
−1 + (μc −

∑
j φcj pjλjSj)

−1

corresponds to the total mean signal-packet waiting time in all
controllers, γ to the amount of guard interval for protecting
the delay bound, β to the weighting factor when considering
the different importance between a total of the mean waiting
time and the size of the guard interval. The objective function
is to minimize the sum of total mean delay and negative value
of guard interval −γ to achieve a better delay to QoS for all
applications. The constraints for the optimization problem are
derived in the following sections.

1) Optimization Constraints: For every local controller i, the
QoS formulation acts to assure the probability that the waiting
delay wi satisfies the adjusted delay bound Dk for type k (�k �
S3 where S3 = {1,2, . . . ,K}) application is larger or equal to
αik , which can be described as

Pr{wi ≤ D′
kD} ≥ αik ∀i ∈ S1 , k ∈ S3 (2)

where Dk
′ = Dk − g.

Similarly, for the cloud controller, the QoS formulation works
to assure the probability that the waiting delay wc satisfies the
adjusted delay bound D′

k for type k application is larger or equal
to αck , which can be described as

Pr{wc ≤ D′
k} ≥ αck ∀k ∈ S3 . (3)

To ensure that the round-trip delays of a type k flow signal
arrival across all controllers is below D′

k with probability larger
or equal to ηk , where ηk is a predetermined value for type k
flow signal, the optimization process will then search and find
appropriate values of αik and αck so that their combined QoS
satisfy the criteria in
⎛

⎝
∑

i

∑

j∈type k

αjkφij pjλj Sj +
∑

j∈type k

αckφcj pjλj Sj

⎞

⎠

×
⎛

⎝
∑

j∈type k

pjλj Sj

⎞

⎠

−1

≥ ηk · 100% ∀i ∈ S1 , j ∈ S2 , k ∈ S3 .

(4)

In other words, the restriction in (4) means that the weighted
average of delay constraint conforming probability, αik and αck ,
across all controllers in the SDN network for type k flow signal
is assured to be larger or equal to ηk . To obtain individual nodal
parameters αik and αck is one part of the optimization problem.

2) Constraint Formulations for Edge Local Controllers: To
define the constraints for local controllers that corresponds to
(2), let Xi,local be the random variable of packet waiting time
in local controller i. Since we use a single server queue with
exponential service time to model every SDN switch, the waiting
time of a packet follows exponential distribution, i.e.,

Xi,local ∼ exponential

⎛

⎝μi −
∑

j

φij pjλjSj

⎞

⎠ ∀i ∈ S1 , j ∈ S2

(5)
and its cumulative density function (CDF) is denoted as Flocal().
The constraints for local controllers can then be written as

Flocal(D′
k) ≥ αik ∀i ∈ S1 , k ∈ S3 (6)

where

Flocal(D′
k) = Pr{wi ≤ D′

k}. (7)

By Shortle et al. [25], it can be derived that

1 − exp

⎡

⎣−
⎛

⎝μi −
∑

j

φij pjλjSj

⎞

⎠D′
k

⎤

⎦

≥ αik ∀i ∈ S1 , j ∈ S2 , k ∈ S3 (8)

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

270 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

and it is equivalent to
∑

j

φij pjλjSj − μi − ln(1 − αik)D′−1
k

≤ 0 ∀i ∈ S1 , j ∈ S2 , k ∈ S3 (9)

which implies that the delay constraint conforming probability
in controller i is assured to be larger or equal to the probability
αik .

Meanwhile, to stabilize the network system in the edge, the
utilization of a local controller (assuming controller i) needs to
satisfy

Ui,local =
∑

j

φij pjλjSjμ
−1
i ≤ 1 ∀i ∈ S1 , j ∈ S2 . (10)

3) Constraint Formulations for Cloud Controller: Similarly,
to derive the required constraints for the cloud controller that
satisfies (3), one should set Xc to be the random variable of
delay waiting time for packets sent to the cloud controller. As
shown in Fig. 2, Xc is the sum of the edge-cloud round trip
delay components, i.e., Xc,forward , Xc,backward the link delay
over the forward and the backward links, and the packet waiting
delay Xc,cloud in the cloud controller. In this paper, the forward
link from a switch to the cloud and the backward link for the
cloud to a switch are both modeled as an infinite server queue
with service rate μd .

Similar to the edge local controller, the distribution of the
packet waiting time (Xc,cloud) in the cloud controller follows
an exponential distribution with rate μc −

∑
j φcj pjλjSj as

shown in (5). Now, the total waiting time Xc can be then be
derived via Xc = X2−hops + Xc,cloud , where X2−hop is the sum
of Xc,forward and Xc,backward .

Finally, using the CDF of Xc , the constraint that corresponds
to (3) can now be derived as

Fc

⎛

⎝D′
k ;μd, μc −

∑

j

φcj pjλjSj

⎞

⎠ ≥ αck ∀j ∈ S2 , k ∈ S3

(11)
where

Fc

⎛

⎝D′
k ;μd, μc −

∑

j

φcj pjλjSj

⎞

⎠ = Pr{wc ≤ D′
k} (12)

which represents that the delay constraint conforming probabil-
ity in the cloud controller is guaranteed to be larger or equal to
the probability αck .

Similarly, to stabilize the network system in the cloud, using
the cloud controller is also controlled within 1 with constraint

Ucloud =
∑

j

φcj pjλjSjμ
−1
c ≤ 1 ∀i ∈ S1 , j ∈ S2 . (13)

4) General Constraint Formulations: For every designated
probabilities φij , αik , and αck , the value should be restricted
between 0 and 1. That is

0 ≤ φij ≤ 1 ∀i ∈ S1 , j ∈ S2 (14)

0 ≤ αik ≤ 1 ∀i ∈ S1 , k ∈ S3 (15)

and

0 ≤ αck ≤ 1 ∀k ∈ S3 . (16)

Since the sum of the assigned probabilities from switch j to
controller i is one, we have

φcj +
∑

i

φij = 1 ∀i ∈ S1 , j ∈ S2 . (17)

The guard interval γ should be limited to the range of 0 to the
minimum delay bound of all applications to ensure that newly
assigned delay bounds are all positive values, i.e.,

0 ≤ γ ≤ min(Dk) ∀k ∈ S3 . (18)

5) Optimization Formulation: In general, when there are n
switches and m controllers, the formulation of the convex opti-
mization problem under adequate resources is depicted as

minimize
φi j ,αi k ,αc k ,γ

f

f = β

[
∑

i

(

μi −
∑

j

φij pjλjSj

)−1

+

(

μc −
∑

j

φcj pjλjSj

)−1]

− (1 − β)γ

s.t.
⎛

⎝
∑

i

∑

j∈ type k

αjkφij pjλjSj +
∑

j∈ type k

αckφcj pjλjSj

⎞

⎠

×
(

∑

j∈typek

pjλjSj

)−1

≥ ηk · 100% ∀i ∈ S1 , j ∈ S2 , k ∈ S3

∑

j

φij pjλjSj − μi − ln(1 − αik)D′−1
k

≤ 0 ∀i ∈ S1 , j ∈ S2 , k ∈ S3

Fc

⎛

⎝D′
k ;μd, μc −

∑

j

φcj pjλjSj

⎞

⎠ ≥ αck ∀j ∈ S2 , k ∈ S3

∑

j

φij pjλjSjμ
−1
i ≤ 1 ∀i ∈ S1 , j ∈ S2

∑

j

φcj pjλjSjμ
−1
c ≤ 1 ∀j ∈ S2

φcj +
∑

i

φij = 1∀i ∈ S1 , j ∈ S2

0 ≤ φij ≤ 1∀i ∈ S1 , j ∈ S2

0 ≤ αik ≤ 1 ∀i ∈ S1 , k ∈ S3

0 ≤ αck ≤ 1 ∀k ∈ S3

0 ≤ γ ≤ min(Dk) ∀k ∈ S3 (19)

where φij , αik , αck , and γ are the decision variables of the
load-balancing controller system. In the delay-objective mode,

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

LIN AND TSAI: HECSDN CONTROLLER SYSTEM WITH OPTIMAL ADAPTIVE RESOURCE ALLOCATION FOR LOAD-BALANCING 271

given a pre-determined value η k for type k flow signal, fea-
sible solutions may not exist when the adjusted delay bound
D′

k for any type k surpasses its original delay bound Dk due
to the growth of the total input flow signal

∑
jλj . When no

feasible solution in the delay-objective mode can be found, the
system changes to fairness-objective mode to release the orig-
inal delay bound into the enlarged delay bound δ described in
Section III-C. When this occurs, the optimization tool (such as
MATLAB) used can easily provide model designer necessary
feedback.

C) Fairness-Objective Optimization

Under insufficient resource conditions, the optimization mode
changes to fairness-objective, which implements fair resource
allocation to guarantee that every application is provided with a
fair amount of resources. The dispatcher minimizes the enlarged
delay bound δ for the delay-unsatisfied applications and assigns
the original delay bound for the other delay-satisfied applica-
tions. Compared with the delay-objective mode, the fairness-
objective mode does not see the delay performance as a main
concern. All resources in this mode are distributed based on the
minimax delay criteria to make sure that every network appli-
cation is under a relatively fair delay bound.

In this mode, the dispatcher allows the delay bound of all
resource-affordable applications to be assigned as the initially
requested (the original delay bound), and minimizes the en-
larged delay bound of other resource-unaffordable applications
to δ, where δ is larger than the initially requested of the resource
unaffordable. Applications (K-types in total) are classified into
two sets, S and U. Resources affordable types belongs to set
S and resources affordable types to set U. Compared with the
delay-objective optimization, the constraints related to delay
bound now need to be modified.

For flow signals sent from resources affordable types of ap-
plications in set S to the local controllers, the QoS formulation
is to assure the probability that the waiting delay wi satisfies the
original delay bound DΩ for type Ω ∈ S application in this set
is larger or equal to αiΩ , which can be described as

Pr{wi ≤ DΩ} ≥ αiΩ ∀i ∈ S1 ,Ω ∈ S. (20)

For flow signals sent from resources unaffordable types of
applications in set U to the local controllers, the QoS formula-
tion is to ensure that the waiting delay wi satisfies the enlarged
delay bound δ for type ω ∈ U application in this set is larger or
equal toαiω , which can be described as

Pr{wi ≤ δ} ≥ αiω ∀i ∈ S1 , ω ∈ U. (21)

Similarly, for flow signals sent from resources affordable
types of applications to the cloud controller, the QoS formu-
lation also works to ensure that the waiting delay wc satisfies
the original delay bound DΩ for type Ω application in set S is
larger or equal to αcΩ , which is described as

Pr{wc ≤ DΩ} ≥ αcΩ ∀Ω ∈ S. (22)

For flow signals sent from resources unaffordable types of
applications in set U to the cloud controller, the QoS formulation

serves to assure the probability that the waiting delay wc satisfies
the enlarged delay bound δ for type ω application in this set is
larger or equal to αcω , which can be described as

Pr{wc ≤ δ} ≥ αcω ∀ω ∈ U (23)

From (20)–(23), the constraints formulation can be derived
from the results obtained in the delay-objective mode as in (24)
and (25). For resource affordable applications in set S, we then
can show

∑

j

φij pjλjSj − μi − ln(1 − αiΩ)D−1
Ω

≤ 0 ∀i ∈ S1 , j ∈ S2 ,Ω ∈ S (24)

and

Fc

⎛

⎝DΩ;μd, μc −
∑

j

φcj pjλjSj

⎞

⎠ ≥ αcΩ ∀j ∈ S2 ,Ω ∈ S.

(25)
In other words, (24) and (25) means that the delay constraint

conforming probability in controller i and the cloud controller
is assured to be larger or equal to αiΩ and αcΩ , respectively, for
resource affordable applications.

For the resource unaffordable applications in set U, we can
write

∑

j
φij pjλjSj − μi − ln (1 − αiω) δ−1

≤ 0 ∀i ∈ S1 , j ∈ S2 , ω ∈ U (26)

and

Fc

⎛

⎝δ;μd, μc −
∑

j

φcj pjλjSj

⎞

⎠ ≥ αcω ∀j ∈ S2 , ω ∈ U

(27)
where (26) and (27) are used to assure that the delay constraint
conforming probability in controller i and the cloud controller
is guaranteed to be larger or equal to αiω and αcω , respectively,
for resource unaffordable applications.

Finally, the load-balancing problem in fairness-objective
mode can be modeled as a convex optimization problem and
described as

minimize
φi j ,αi k ,αc k ,δ

δ

s.t.
⎛

⎝
∑

i

∑

j∈ type k

αjkφij pjλjSj +
∑

j∈ type k

αckφcj pjλjSj

⎞

⎠

×
⎛

⎝
∑

j∈ type k

pjλjSj

⎞

⎠

−1

≥ ηk · 100% ∀i ∈ S1 , j ∈ S2 , k ∈ S3

∑

j

φij pjλjSj − μi − ln(1 − αiΩ)D−1
Ω

≤ 0 ∀i ∈ S1 , j ∈ S2 ,Ω ∈ S

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

272 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

∑

j

φij pjλjSj − μi − ln(1 − αiω)δ−1

≤ 0 ∀i ∈ S1 , j ∈ S2 , ω ∈ U

Fc

⎛

⎝DΩ;μd, μc −
∑

j

φcj pjλjSj

⎞

⎠ ≥ αcΩ ∀j ∈ S2 ,Ω ∈ S

Fc

⎛

⎝δ;μd, μc −
∑

j

φcj pjλjSj

⎞

⎠ ≥ αcω ∀j ∈ S2 , ω ∈ U

∑

j

φij pjλjSjμ
−1
i ≤ 1 ∀i ∈ S1 , j ∈ S2

∑

j

φcj pjλjSjμ
−1
c ≤ 1 ∀j ∈ S2

0 ≤ φij ≤ 1 ∀i ∈ S1 , j ∈ S2

0 ≤ αik ≤ 1 ∀i ∈ S1 , k ∈ S3

0 ≤ αck ≤ 1 ∀k ∈ S3

φcj +
∑

i

φij = 1 ∀i ∈ S1 , j ∈ S2 . (28)

In the fairness-objective mode, given a pre-determined value
η k for type k flow signal, feasible solutions may not exist when
any application in set S surpasses its original delay bound DΩ
due to the growth of the total input flow signal Σjλj .

When no feasible solution in fairness-objective mode is avail-
able, the system then removes the QoS unsatisfied applications
from set S into set U and provide new feasible solution. There
always exist a feasible solution when all applications are cat-
egorized into set U since their delay bound δ can always be
enlarged.

IV. SIMULATION AND ANALYSIS

In this section, we validate the performance of the proposed
HECSDN system. The ECSDN algorithm in the system is com-
pared with the Greedy scheme facing different patterns of traffic
arrivals. In the Greedy scheme, the arrivals are allowed to dy-
namically choose the local controllers and the cloud controller
with the smallest number of waiting packets.

Here, the employed simulation program consists of two parts.
The first part for the queueing model simulation is coded with
Python. The second part for optimization is carried out using
MATLAB Optimization Toolbox Version 8.1.

A. Parameter Setup

A testbed with three local controllers, a cloud controller and
one central controller is established in this simulation. The
setting of model parameters on hardware (switches and con-
troller) processing rate and network traffic are considered as
the benchmark for numerical analysis according to real condi-
tions in previous related works. Considering the possible pro-
cessing rate variations in real conditions, the processing rate
of signal-packets for local controllers are set with different

Fig. 4. Flowchart of the ECSDN algorithm.

values around the processing rate of a typical controller, which
is 30 000 packets/s [12], which is μ1 = 33 000 (packets/s),
μ2 = 35 000 (packets/s) and μ3 = 32 000 (packets/s), respec-
tively. The cloud controller is assumed to operate over a VM with
combined processing capability of μc = 150 000 (packets/s).
Each switch is set with the data-packet forwarding rate μ3 =
50 000 (packets/s) [24].

According to real network traffic measurements [3], a packet
in the switch belongs to a new data flow with average probability
of pj = 0.03. The average number of packets per batch are set
to Sj = 8 for all switches j. The optimization parameter β can
be set to different values according to network requirements. In
this paper, β is set to 0.5 considering equivalent importance on
signal-packet mean delay and delay guard interval.

Performances are evaluated considering two major types of
delay-sensitive interactive applications: VoIP and video stream-
ing. Based on a series of subject tests, The International
Telecommunication Unit G.114 specification recommends less
than a 150 millisecond (ms) one-way end-to-end delay for high-
quality real-time traffic in audio and video streaming [26]. To
achieve great transmission performance, this paper considers
the control plane delay to be within 0.6 and 0.4 ms for VoIP
and video streaming. Moreover, the QoS requires the packet-
overdue ratios of the two types to be limited within 1%. In the
experiment, every switch allows data flow traffic arrivals of a
certain type.

B. Design of Arrival Patterns

This section describes the arrival pattern designed for testing
our algorithms under various traffic conditions and demonstrate
the result using two performance metrics, the packet mean wait-
ing time and packet-overdue ratio in the following section. In the
simulation, the packet corresponds to the flow signal-packets in

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

LIN AND TSAI: HECSDN CONTROLLER SYSTEM WITH OPTIMAL ADAPTIVE RESOURCE ALLOCATION FOR LOAD-BALANCING 273

Fig. 5. Arrival pattern over time.

the control plane. Type I application refers to VoIP and type II
to video streaming.

According to different arrival rates of data flows, the pattern
of type I arrival stream can be divided into three phases (0–50 s,
50 s-100 s, and > 100 s) as shown in Fig. 5. The Type II arrival
stream keeps oscillating every 20 s in the first 80 s and remains
at constant rate in the last 40 s. The total network size of the
switches is set to 56 with half of the switches serving type I
arrival stream and the other serving type II arrival stream. In
addition, the edge-to-cloud distance is set to be 100 km.

In the first region, type I arrival stream remains slightly larger
than type II. Using the ECSDN algorithm, the mode of opti-
mization remains in delay-objective. In the second region, the
arrival rate of type II arrival stream is much higher than type I. In
this situation, the computation resource remains sufficient and
optimization stays in the delay-objective mode.

Focusing on rapid traffic fluctuations in shorter intervals, the
third region can be further divided into two sub-regions 3-1 and
3-2, respectively. In region 3-1, the arrival rate declines and
transforms back to the pattern in region 1. In region 3-2, type I
arrival stream boosts up to the second phase while type II arrival
stream drops back to the original value.

For the fourth region, type I arrival stream is with high arrival
rate while type II arrival stream oscillates back to a value higher
than type I arrival stream. In this region, the total arrival is
boosted to high-level and the computational resources become
unaffordable for the controllers to satisfy the QoS requirements
of both types. The optimization procedure, therefore, changes
to the fairness-objective mode.

In the fifth region, the arrival rate drops and transforms back to
the pattern in region 3.2. In this region, computational resources
are satisfied and the optimization returns to the delay-objective
mode. In the final region of the scenario, the arrival rate of both
type I and type II arrival stream is set to the original value in the
first region. In this condition, computational resource is satisfied
and the optimization in ECSDN returns back to delay-objective
mode.

C. Performance Evaluation Under Different Arrival Patterns

It can be clearly observed in Figs. 6 and 7 that the ECSDN al-
gorithm outperforms the Greedy scheme in the two performance

Fig. 6. Mean packet delay over time.

Fig. 7. Packet overdue ratio over time.

metrics, packet delay, and overdue ratio. The performance eval-
uations in Figs. 6 and 7 can be further divided into six regions
according to the traffic arrival patterns. In order to observe both
the transient and steady-state behavior of the flows, all regions
are separated into equal time intervals with 20 s each in that the
transient states last for around 18 s.

In region 1 (see Figs. 6 and 7), the mean packet delays of
type I and type II arrival streams are both 0.08 ms and the
packet overdue ratio of the two types are below 1% as required.
However, using the Greedy approach, the mean packet delay
approximates 0.82 ms for both and the packet overdue ratio
for both types of applications are greatly violated against the
requirement. It can be observed that ECSDN achieve greater
performance than Greedy.

In region 2, although the mean packet delay of both arrivals in-
creases under ECSDN, it only causes an average amount of 0.16
ms delay on the packets, compared with the delay of 0.83 ms
in Greedy. This proves the stability of the ECSDN algorithm
during high traffic load. For the performance on packet overdue
ratio, Fig. 7 shows that the ratios of both types are significantly
improved in ECSDN. However, the ratio of type II delay vio-
lation only becomes higher than the 1% requirement during a
transient period and it soon becomes satisfied with the require-
ment after entering the steady state.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

274 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

Fig. 8 Relationship of delay and network size for type I.

In region 3-1, computational resources are satisfied and
the optimization returns to the delay-objective mode. The
packet overdue ratio of both types in ECSDN drops back
rapidly within the delay bound as expected while Greedy does
not.

In region 3-2, computational resources remain sufficient and
the optimization stays in the delay-objective mode. The amount
of the mean packet delay in ECSDN is much smaller than Greedy
by 0.6 ms. The overdue ratio in ECSDN for both types of ap-
plications are within the 1% requirement, while Greedy stays
highly violated above.

In region 4, the mean packet delay of both types of appli-
cations raises up to approximately 0.33 ms in ECSDN, while
in Greedy, the mean packet delay of both types of applications
approximates 0.83 ms. The packet overdue ratio of either type
of application is over 1% requirement in ECSDN. However,
the ratio in ECSDN is still relatively small, compared with the
Greedy scheme.

Other than the performances, the effectiveness of fair re-
source allocation in fairness-objective mode is demonstrated in
region 4. From 60 s to 70 s, type II packet overdue radio is over
1% while type I packet overdue radio remains less than 1%.
However, from 70 s to 80 s, the effect of fairness optimization
now plays a role. The delay bounds for the two types are shifted
to the same enlarged delay bound causing type I packet over-
due ratio to exceed the 1% requirement and its performance is
better than that of type II. Since the original delay bound for
type II application is smaller, it can be expected that its packet
overdue ratio stays higher than type I when the delay bounds
of the applications are both shifted to the same enlarged delay
bound.

In regions 5 and 6, the arrival pattern and optimization mode
is similar to region 3-2 and region 1. Thus, the simulation result
are as expected.

D. Relationship of Network Size and Delay

In this section, the average arrival rate of flow signal-
packets in each switch is approximately λ = 100 (packets/s).
The network size is the number of switches in the net-
work, and the simulation results are shown in Figs. 8 and 9.

Fig. 9. Relationship of delay and network size for type II.

For both methods, delay increases as the network size grows
large. Even in the conditions of fair resource allocation
and strict QoS requirements, ECSDN still outperforms the
Greedy scheme on delay performances in different network
scales.

When the size of the network is small, the difference on delay
time between Greedy and ECSDN is significant. For instance,
when the size of the network is 150 (switches), the average delay
in ECSDN is about 7 × 10−2(ms), while in the Greedy scheme,
the value of average delay approximates 0.42(ms). Under con-
ditions of serving a large network, i.e., when the size approaches
1000, the average delay in ECSDN is about 0.13(ms), while in
the Greedy scheme, the value of average delay is still close to
0.42(ms).

From the result shown in Fig. 7, it can be observed that the
optimization mode of the system changes into fairness objective
with network size larger than 782. Figs. 8 and 9 show that the
performance in controller delay outperforms Greedy when the
scale of network approaches 2500. However, as the network
size exceeds 2000, the control plane delay in both algorithms
increase to millisecond scale. This delay is higher than that
of greedy but is still within 4 ms. In conclusion, the ECSDN
algorithm has more flexibility and effectiveness even in various
network size.

E. Relationship of Affordable Network Size and Edge-Cloud
Distance

In this section, the average arrival rate of flow signal-packets
in each switch is approximately λ = 100 (packets/s). An af-
fordable network size refers to the size that the QoS of both
applications in the network can be satisfied. The affordable net-
work size varies along with the edge-to-cloud distance in a non-
linear relationship given in Table II. When the edge-to-cloud
distance is 10 km, the controllers are capable of affording a
large network with 1656 switches. When the distance increases
to 1000 km, the affordable size decreases to only 644. The 958-
switch difference in affordable size between 10 and 100 km is
much larger than the 54-switch difference between 100 km and
1000 km. This nonlinear relationship between network size and
edge-cloud distance indicates the importance in the allocation
of the cloud.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

LIN AND TSAI: HECSDN CONTROLLER SYSTEM WITH OPTIMAL ADAPTIVE RESOURCE ALLOCATION FOR LOAD-BALANCING 275

TABLE III
RELATIONSHIP OF AFFORDABLE NETWORK SIZE AND EDGE-CLOUD DISTANCE

TABLE IV
RELATIONSHIP BETWEEN UTILIZATION OF CLOUD VM AND

EDGE-CLOUD DISTANCE

F. Relationship of Utilization and Edge-Cloud Distance

In this section, the network size of the system is set to
1500, representing a large-scale network. The data-packet ar-
rival rate of each switch being λ = 100 (packets/s) operating in
the ECSDN algorithm. When the edge-cloud distance increases,
the utilization of the controller (cloud VM) will decrease as
shown in Table IV. This indicates that the location of a data
center for the cloud controller should be set within a certain
range of distance to achieve better performance. As observed
from the simulation result, when the distance between edge and
cloud approaches 1000 km, the utilization of the cloud con-
troller is only 34.4%, while when the distance of the cloud is
only 10 km far away from the edge, the utilization of the cloud
controller approaches 60.9%.

When the edge-to-cloud distance is between 100 and
1000 km, the drop in utilization due to the network size in-
crease is only 7.1%. When the distance is 10 and 100 km, the
difference is approximately 20% between conditions. The uti-
lization of the cloud also becomes much smaller when the cloud
is 100 km away from the edge, as compared to the situation when
the location of the cloud is within 10 km of the local controllers.
This coincides with the results concluded from Table III. The
simulation results show a significance impact of edge-to-cloud
distance on the system performance. It also shows a new and
great significance in capacity improvement when a cloud con-
troller appropriately installed. Meanwhile, we have shown in
our example that this arrangement can support at least 1000
extra switches.

V. CONCLUSION

In large-scale networks, controllers are required to process
millions of flow signals per second without compromising the
QoS of network applications. Well equipped to improve SDN’s
efficiency on large-scale networks and to make the best use
of resources in the control plane, the proposed HECSDN con-
troller system can dispatch certain computation workload to the
cloud controller and handle various traffic conditions and fluc-
tuations. As observed from the simulations, the system’s perfor-
mance remains highly stable even under highly fluctuating traffic
loads.

Moreover, the system can strongly support large-scale net-
works under high standards of QoS. When the distance between
the edge and the cloud is within 10 km, the HECSDN system

allows 99% of the arrival data flows with at least 1656 switches to
satisfy the QoS requirements and ensure fair resource allocation
according to the Minimax criteria on the extra guard interval. In
summary, the proposed controller system has proved effective
on large-scale SDN without sacrificing the overall performance
and the QoS of various network applications.

REFERENCES

[1] R. Alvizu et al., “Comprehensive survey on T-SDN: Software-defined
networking for transport networks,” IEEE Commun. Surveys Tuts., vol. 19,
no. 4, pp. 2232–2283, Oct.–Dec. 2017.

[2] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An intellectual
history of programmable networks,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 2, pp. 87–98, 2014.

[3] B. Xiong et al., “Performance evaluation of OpenFlow-based software-
defined networks based on queueing model,” Comput. Netw., vol. 102,
pp. 172–185, 2016.

[4] A. D. Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor net-
work management based on software-defined networking,” in Proc. 27th
Biennial Symp. Commun., 2014, pp. 71–75.

[5] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
2008.

[6] A. Tavakoli et al., “Applying NOX to the datacenter,” in Proc. HotNets,
2009.

[7] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[8] L. Yang, B. Ng, and W. K. G. Seah, “Heavy hitter detection and identifi-
cation in software defined networking,” in Proc. 25th Int. Conf. Comput.
Commun. Netw., 2016, pp. 1–10.

[9] H. C. Joksch, “The shortest route problem with constraints,” J. Math. Anal.
Appl., vol. 14, no. 2, pp. 191–197, 1966.

[10] Z. Jia and P. Varaiya, “Heuristic methods for delay-constrained least cost
routing using k-shortest-paths,” IEEE Trans. Automat. Control, vol. 51,
pp. 707–712, Apr. 2006.

[11] L. Zhao et al., “Traffic engineering in hierarchical SDN con-
trol plane,” in Proc. IEEE 23rd Int. Symp. Quality Service, 2015,
pp. 189–194.

[12] Y.-W. Ma et al., “Load-balancing multiple controllers mechanism for
software-defined networking,” Wireless Pers. Commun., vol. 94, no. 4,
pp. 3549–3574, 2017.

[13] Y. Zhou et al., “A load balancing strategy of SDN controller based on
distributed decision,” in Proc. IEEE TrustCom, 2014, pp. 851–856.

[14] L. Guo et al., “Dynamic performance optimization for cloud computing
using m/m/m queueing system,” J. Appl. Math, vol. 2014, 2014, Art.
no. 756592.

[15] S. Rashidi and S. Sharifian, “A hybrid heuristic queue based algorithm for
task assignment in mobile cloud,” Future Gener. Comput. Syst., vol. 68,
pp. 331–345, 2017.

[16] M. R. Rahimi et al., “MAPCloud: Mobile applications on an elastic and
scalable 2-tier cloud architecture,” in Proc. IEEE 5th Int. Conf. Utility
Cloud Comput., 2012, pp. 83–90.

[17] F. Ramezani et al., “Evolutionary algorithm-based multi-objective task
scheduling optimization model in cloud environments,” World Wide Web,
vol. 18, no. 6, pp. 1737–1757, 2015.

[18] F. P.-C. Lin and F. K. H. Phoa, “A performance study of parallel pro-
gramming via CPU and GPU on swarm intelligence based evolutionary
algorithm,” in Proc. Int. Conf. Intell. Syst., Metaheuristics Swarm Intell.,
2017, pp. 1–5.

[19] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[20] J. Wu et al., “Goodput-aware load distribution for real-time traffic over
multipath networks,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 8,
pp. 2286–2299, Aug. 2015.

[21] X. Wang et al., “Delay-cost tradeoff for virtual machine migration in cloud
data center,” J. Netw. Comput. Appl., vol. 78, pp. 62–72, 2017.

[22] F. Li et al., “A QoS guaranteed technique for cloud applications based
on software defined networking,” IEEE Access, vol. 5, pp. 21229–21241,
2017.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

276 IEEE SYSTEMS JOURNAL, VOL. 14, NO. 1, MARCH 2020

[23] D. Kreutz et al., “Software-defined networking: A comprehensive survey,”
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[24] Y. Goto et al., “Queueing analysis of software defined network with real-
istic openflow based switch model,” in Proc. IEEE 24th Int. Symp. Model.,
Anal. Simul. Comput. Telecommun. Syst., 2016, pp. 301–306.

[25] J. F. Shortle et al., “Simple markovian queueing models” in Fundamen-
tals of Queueing Theory, 4th ed. New York, NY, USA: Wiley, 2018,
pp. 49–65.

[26] Y. Chen, T. Farley, and N. Ye, “QoS requirements of network applications
on the Internet,” Inf. Knowl. Syst. Manage., vol. 4, no. 1, pp. 55–76,
2004.

Frank Po-Chen Lin received the B.S. degree in elec-
trical engineering from National Sun Yat-sen Univer-
sity, Kaohsiung, Taiwan, in 2016 and the M.S. degree
from National Taiwan University, Taipei, Taiwan in
2018.

He is currently a Research Assistant with the Insti-
tute of Statistical Science, Academia Sinica, Taipei,
Taiwan. His current research interests include soft-
ware defined networking, scheduling algorithm de-
signs, parallel computing, and supercomputing.

Mr. Po-Chen Lin was a recipient of the College
Student Research Creativity Award in the Ministry of Science and Technology,
Taiwan, in 2016.

Zsehong Tsai (M’89) received the B.S. degree in
electrical engineering from National Taiwan Univer-
sity, Taipei, Taiwan, in 1983 and the M.S. and Ph.D.
degrees from the University of California, Los Ange-
les, CA, USA, in 1985 and 1988, respectively.

During 1988–1990, he was a member of the
technical staff at AT&T Bell Laboratories, where
he investigated the performance aspects of network
management systems. Since 1990, he has been with
the Department of Electrical Engineering and Grad-
uate Institute of Communication Engineering, NTU,

where he is currently a Professor.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 29,2020 at 17:14:39 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

