
A Performance Study of Parallel Programming via CPU
and GPU on Swarm Intelligence Based Evolutionary

Algorithm
Frank Po-Chen Lin

College of Electrical Engineering & Computer Science
National Taiwan University

EE Building No 2, 1 Roosevelt Road Section 4
Daan District, Taipei 106, Taiwan

(886) 2-3366-3700

r05942033@ntu.edu.tw

Frederick Kin Hing Phoa
Institute of Statistical Science

Academia Sinica
128 Academia Road Section 2,

Nangang District, Taipei 115, Taiwan
(886) 2-6614-5634

fredphoa@stat.sinica.edu.tw

ABSTRACT

Algorithm parallelization diversifies a complicated computing

task into small parts, and thus it receives wide attention when it is

implemented to evolutionary algorithms (EA). This works

considers a recently developed EA called the Swarm Intelligence

Based (SIB) method as a benchmark to compare the performance

of two types of parallel computing approaches: a CPU-based

approach via OpenMP and a GPU-based approach via CUDA.

The experiments are conducted to solve an optimization problem

in the search of supersaturated designs via the SIB method. Unlike

conventional suggestions, we show that the CPU-based OpenMP

outperforms CUDA at the execution time. At the end of this paper,

we provide several potential problems in GPU parallel computing

towards EA and suggest to use CPU-based OpenMP for parallel

computing of EA.

CCS Concepts

• Computing methodologies ➝ Optimization algorithms and

Massive parallel algorithms • Software and its engineering ➝

Distributed memory and parallel programming languages.

Keywords

Swarm Intelligence; Parallel Computing; OpenMP; CUDA.

1. INTRODUCTION
Evolutionary algorithm (EA) is typically a population based

stochastic search technique and has been successfully used to

solve hard optimization, search, and machine learning problems.

It achieves a high level of problem solving efficacy in many

engineering application areas, such as civil, mechanical, and

industrial engineering, computer science, power systems, control,

and signal processing in the engineering [1] or in the area of

biomedicine/bioinformatics for cancer chemotherapy optimization,

cancer chemotherapy drug scheduling model development and

problem solving for protein folding [2]. As the amount of

processing data have become nearly inconceivable, EAs have

been applied to solve optimization problems with increasing

difficulty and complexity [3]. The sequential programming no

longer suffices for the needs of EAs. In order to improve the

efficiency of EAs, parallel implementations have been used to

significantly reinforce and speed up the search, allowing to

achieve high quality results in reasonable execution times [4].

Parallel computing is a type of computation that simultaneously

utilizes multiple computing resources (such as cores, computers)

to solve a computational problem. A parallel programming is

created for performing the normally sequential steps of a

computer program simultaneously, using two or more processors.

CPUs and GPUs have significantly different architectures that

make them better suited to different tasks. Multitasking is heavily

dependent on the type of application and since it could be

sequential or parallel, CPU and GPU both are essential to perform

better on such cases. Recently, much research focuses on

expanding the usage scenarios for GPU since it works well to use

large scale data decomposition and offers orders of magnitude

speedups on those problems with highly parallel structure [5], [6].

However, individual processing units in a GPU cannot match a

CPU for general purpose performance for that they are much

simpler and do not have optimizations like long pipelines, out-of-

order execution and instruction-level-parallelization. In addition,

GPU computing also requires data transfer between CPU and

GPU and cause data transmission overhead. [7] has also

mentioned some of the problem in GPU programming.

This study explores the extent to which traditionally CPU

domain problems can be mapped to GPU architectures using

current parallel programming models and provide insights into

why certain throughput computing kernels perform better on CPU

and others work better on GPU. GPU performance is compared to

both single-core and multi-core CPU performance. For GPU

computing, [8] and [9] have found the overall performance of

general purpose GPU much slower considering data transfer

latency and lay stress on the necessity of including memory

transfer overhead when reporting GPU performance. We present

different parallel models, Open Multi-Processing (OpenMP) and

Compute Unified Device Architecture (CUDA), on the swarm

intelligence based-evolutionary algorithm (SIB-EA) [10] to

analyze the performance of parallel implemented swarm

intelligence based Supersaturated Design (SIBSSD) algorithm

between CPU and GPU as our benchmark of EAs. Finally, we

evaluate their efficiencies under different implementations via

their simulation results.

This paper is organized as follows. Section 2 presents the two

main computing procedures on SIB-EAs – CPUs and GPUs with

OpenMP and CUDA respectively. Section 3 demonstrates the

simulation results with SIBSSD. Finally, concluding remarks are

presented in Section 4.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permission@acm.org.

ISMSI ‘17, March 25–27, 2017, Hong Kong, Hong Kong.

© 2017 ACM 978-1-4503-4798-3/17/03 …$15.00.
DOI: http://dx.doi.org/10.1145/3059336.3059339

1

2. Parallel Computing: CPU versus GPU
The aim of this study is to compare the efficiency of parallel

programming between OpenMP, CUDA and a single-core CPU to

explore the efficiency to implement SIB-EAs with parallel

programming. In the next section, we run SIBSSD on different

platforms using OpenMP, CUDA and single-core CPU

respectively.

2.1 Swarm Intelligence Based Evolutionary

Algorithm (SIB-EA)
Many researches are interested in the analysis of big data and

emphasize the importance of computational speed when dealing

with the data calculation. In this paper, instead of only focusing

on the speed of parallel computing, we are also interested in the

availability of parallel programming when dealing with EAs since

a large number of their functionalities are distinct and self-

contained. We analyzed the core computation and coding

characteristics of SIB- EA kernels using both OpenMP and

CUDA.

The common idea in EAs behind all the techniques are the

same: given a group of randomized particles as a set of candidate

solutions and apply an objective function as an abstract fitness

measurement. Based on this fitness, the suitable candidates are

chosen to seed the generation by applying mutation (MIX) and

recombination (MOVE) to them. After executing MIX and

MOVE procedure on the candidates, the candidates (the elements

inside each particle) are evaluated by the objective function, the

best-fitted candidates will be set as the updated particles and being

selected as new candidates for the next generation in the next

iteration. The process continues until either a candidate with

sufficient quality is found or the computational limit is reached.

Details are omitted but interested readers may refer to [11]. In this

research, SIBSSD is executed in a parallel fashion as a benchmark

of parallel implemented SIB-EAs. is used as the quality

function, further detail for may refer to [12].

2.2 Computing with CUDA
CUDA is a parallel computing platform and application

programming interface (API) model created by NVIDIA. It allows

software developers to use a NVIDIA GPU for general purpose

processing – an approach known as GPGPU. The CUDA platform

is a software layer that gives direct access to the GPU's virtual

instruction set and parallel computational elements and is

designed to work with programming languages such as C and

Fortran. This accessibility makes it easier for specialists in parallel

programming to utilize GPU resources. To compute with CUDA,

it is required to communicate between the HOST (CPU) and

DEVICE (GPU). To start parallel programing in GPU, we have to

first transfer the data from the HOST to the DEVICE, then we can

start computing in the GPU with multiple threads. Finally, the

data is transferred back to the HOST after the computations end.

Our experiment runs on the GPU platforms, NVIDIA GeForce GT

740M with the process mainly executed in the kernel function of

CUDA based on C.

The main idea of our computing kernel for an evolutionary

algorithm like SIBSSD is discussed and shown in Figure 1. There

are two main parts in the computing procedure, initialization and

main operation. In the first part, the code is written in original C

language in CPU end and that GPU has not yet been used. The

procedure randomly generates a set of balanced matrix as

initial particles where each column in the matrix represents a

single particle, evaluates the objective function () value of

each particle, initializes Local Best (LB) for each particle and

Global Best (GB) for all the particles and sets the initialized

particles as the candidate solutions.

 During the iteration, MIX and MOVE operations are carried

out. The MIX operation is a column exchange procedure,

consisting of

column deletion and addition. For each generated candidate i.e.

 , columns are replaced in by columns from

another candidate , so that the replaced design has

a smaller criterion value. In the MOVE operation, the movement

of a particle is completed by replacing each current particle with

possibly another particle to reach a smaller value of .

Before starting the calculation in GPU, we use cudaMalloc

and cudaMemcpy in the code for allocating the size of the

memory and for transferring the data required for computation in

the GPU. The particles are grouped together into blocks in CUDA,

and blocks are processed in parallel. Then, the MIX operation

mainly deals with deleting and adding columns, the particles are

first transformed into matrices containing and operate the

column deletion simultaneously. In the column deletion, the

correlations between column pairs are computed and saved as

correlation matrices, then we search and delete the index of

columns with the largest correlation in the matrices. After the

column deletion, the column addition follows, which does almost

the same as deleting columns except that the particle

transformation matrices are added with the columns on the index

that has the minimum value of correlation.

In the MOVE operation, particles replace each current particle

with another particle to reach a smaller value in the quality

function. With the evaluated value of each particles in the

MIX procedure, we compare the values among three

options and decide which one should be chosen as the new

candidate in the next iteration. In this part, if/else statements and

index-searching are operated to compare the values of the

particles simultaneously in each blocks.

In CUDA, memory allocation is also an important issue of

speeding up the procedure in an efficient way. The memory

Figure 1. The process of SIBSSD with CUDA.

.

2

architecture of the NVIDIA GPU is depicted as Figure 2. In the

HOST end, the study sets the initialized particles in the global

memory instead of the constant memory for that the constant

memory has a size limit of 64KB that is not enough to save the

entire data when we have particles samples larger than 64KB,

which is often the situation during big data analysis even though

the constant memory has a cache with 8KB but the global

memory does not. On the other hand, as a profitable way of

performing computation on the device, we partition the particles

as a data subset and load it into the declared shared memory to

take advantage of its fast accessing speed. Share memory is a low-

latency, high-bandwidth, indexable memory that runs close to

register speeds. Therefore, when we compute on the subset from

shared memory, each thread can access the data efficiently with

the highly decreased latency overhead with every threads in the

same block sharing the same memory.

2.3 Computing with OPENMP
OpenMP is an implementation of multithreading, a method of

parallelizing a master thread into a specified number of slave-

threads to divide the task among them, depicted in Figure 3. The

threads then run concurrently, with the runtime environment

allocating threads to different processors. This study uses Intel(R)

Core(TM) i5-3337U CPU (Dual Core) with 1.8GHz clock speed

as our platform for OpenMP to execute the SIB-EA, choosing the

same section to parallelize as we did in CUDA. By using the APIs

provided by OpenMP, this study parallelizes the for-loops inside

the kernel by adding #pragma omp parallel {#pragma omp for

schedule(static), private(j), which is indeed quite simple when

compared to CUDA. To ensure all threads complete their tasks

before moving to the next iteration, we add #pragma omp barrier}

at the end of the parallel section to pause all threads until all

threads execute the barrier. Instead of parallelizing the particles,

OpenMP parallelizes the for-loop inside the kernel shown in

Figure 4. The main for-loop is executed simultaneously with the

cores in the CPU.

3. Demonstration and Discussion : SIBSSD

Example
In this section, the study evaluates the performance difference

between CUDA and OpenMP by testing the execution time of

SIBSSD on each platform, where SIBSSD is set as the benchmark

for SIB-EAs. This paper takes the data transfer time into account

for fair comparison of real speedup provided by a device.

The total execution time is analyzed and it is set as an indicator

to observe the computing performance. This paper compares the

difference of the execution time with different parameter values in

SIBSSD with SSDs, where is the size of the particle

and is the total number of SSDs. The size of the input data

has a major influence on the execution time of the programs. The

difference between the time span of the execution is discussed by

setting the parameters values as the control variable and we focus

only on the performance between CPU and GPU.

Visual Studio 2013 is used to conduct the comparison between

CUDA and OpenMP under several premise. The computation

limit of value and the total iterations are set to be 2.5 and

Figure 4. Loop inside the kernel of OpenMP.

.

Figure 2. Memory architecture of GPU with CUDA.

Figure 3. The process of SIBSSD with OpenMP.

.

3

100 respectively. This study adopts NVIDA CUDA toolkit 7.5 for

operating CUDA in Visual Studio 2013.

3.1 Performance Comparison of SIBSSD
We execute SIBSSD in two scenarios: CUDA and OpenMP

(dual core). The execution results under different values of and

 are demonstrated in Figures 5 and 6. The values on each bar

of these figures are in the unit of seconds per iteration (s/iteration).

An interesting observation is found in the figure: Computing in a

single-core CPU is even more efficient than CUDA. As the

dimensions grow, the exceeding performance of single-core CPU

to CUDA becomes apparent. Thus, SIB-EAs are apparently not

suited to execute in CUDA. CUDA has a less efficient

performance compare to a single-core CPU. Second, the

efficiency of OpenMP outperforms that of CUDA. In almost all

cases, the operation time of OpenMP is about 20 times faster than

that of CUDA. Apparently, SIB-EAs and many evolutionary

algorithms are not suited to execute in CUDA. It is totally

opposite to conventional suggestion about the promotion on the

use of GPU parallel computing.

3.2 Discussion
Figure. 7 shows the computing results that OpenMP has

approximate a 20 speedup rate when compared to CUDA. In this

discussion, we attempt to explain the underlying reasons why such

unexpected phenomenon may result.

In SIBSSD and many evolutionary algorithms, there are some

disadvantages of using CUDA as a computing platform. During

the entire process in the kernel function, particles were

parallelized into different share memory while each share memory

consists of a particle with size of and each block contains one

share memory.

It allows all the particles to operate the MIX and MOVE

operations simultaneously with the particles parallelized in a

block-dimension. However, in SIB-EAs, although the particles

operate in the same way, each elements does not perform the same

calculations. To follow the SIMD structure, all the calculations of

each particle can only be carried out by a single thread in the GPU

and makes it unable for the operation to achieve highly data-

parallelism. In other words, the structure in SIBSSD does not

allow us to make full use of the parallelization structure in GPU.

Instead of parallelizing the elements of each particle into threads,

the EAs only allows us to parallelize the particles into blocks.

Consequently, GPU randomly chooses one thread to finish the

entire operation for every cells in each particle, all the operations

for the elements in the particles are operated with one GPU thread

only and it causes an apparent increase in the operation time

compare to CPU. Since the elements in each particles do a lot of

linear algebra calculations with only one of the weak cores in

GPU, the operation would be eventually more time-consuming.

On the other hand, for the MOVE operation, since the decision

making step consists of a bunch of if/else branching, GPU

computes both directions of the branch for all warps in each block

and results in overhead and efficiency reduction.

In addition, most GPU are designed for stream or throughput

computing, where cache memories are ineffective. To tolerate

memory latency, it requires a high degree of multithreading.

Nevertheless, the structure of SIBSSD is not able to be highly

parallelized and it leads to a great reduction in the computing

performance. Besides, we also take the time of data transfer into

account for that we have to transmit the huge amount of data from

CPU to GPU and then transfer the data back after the calculations

in the kernel function. In brief, the EAs does not provide a highly

parallel environment for all the elements in the particles to follow

a SIMD model structure and would largely decrease the speed of

calculation.

For OpenMP, both task parallelism and data parallelism can be

achieved. It is based upon the existence of multiple threads in the

shared memory programming paradigm. A shared memory

process consists of multiple threads and the threads can cache

their data and are not required to maintain exact consistency with

real memory all of the time, which can reduce the data accessing

latency automatically without giving any other instructions to the

computer. The caches provided by the CPU makes it easy for

OpenMP to achieve task parallelism without latency overhead

which is not the case in GPU due to its architectural

implementation.

In SIBSSD, each thread in CPU parallelizes the candidate-

updating iteration. Since the main iteration is executed

0.39 2.32

6.99

0.79 4.65

13.98

0

5

10

15

m = 10 m = 20 m = 30

Seed = 512 Seed = 1024

0.027 0.135

0.399

0.05 0.257

0.838

0

0.2

0.4

0.6

0.8

1

m = 10 m = 20 m = 30

Seed = 512 Seed = 1024

0.16 0.11 0.1

2.52

2.03
1.74

0

0.5

1

1.5

2

2.5

3

m = 10 m = 20 m = 30

CUDA OpenMP

Figure 5. Runtime of SIBSSD with CUDA.

.

Figure 6. Runtime of SIBSSD with OpenMP.

.

Figure 7. Comparison with CUDA and OpenMP.

.

4

simultaneously and the operations of each particle are carried out

by a much more powerful CPU core, OpenMP stands out in the

performance. It is also interesting to know that OpenMP provides

a user-friendly interface and would be easier for programmers to

implement than CUDA.

Similar phenomenon is expected to happen in other EAs. These

“nature-inspired” EAs feature inter-unit “communications”, which

usually lead to many if/else branching for unit comparison. In

addition, their convergence towards optima require an attractive

force from their overall best unit, which require excessive data

transfer and increase calculation time. There are some EAs that do

not need such attractive force, like genetic algorithm, but their

convergence towards optima is usually slow.

4. CONCLUSIONS
As shown in the simulation, OpenMP (dual Core) has a better

performance than CUDA (a 20-times speed increase on SIB-EAs).

For SIB-EAs, there are some disadvantages of using CUDA as

a computing platform. For GPU to operate efficiently and faster

than CPU, algorithm must take advantage of the large parallelism

inherent in a GPU's design, particularly for floating point. In other

words, the architecture feature of the algorithm is a key to

accelerate the entire throughput computing workload. However,

due to the structure of SIB-EAs, it fails to make full use of the

parallelization structure, because the particles are only able to be

parallelized into blocks consisting of only one thread. Since every

thread is carried out by a weaker core than CPU, the

computational workload increases. Besides, memory latency also

reduces the computing efficiency in the benchmark of this study.

Unlike OpenMP, the cache memory in most GPU are ineffective

and mostly result in memory latency overhead if the operations do

not reach a certain amount of parallel degree. In addition, the code

for SIB-EAs consists of many if/else branching, so a performance

reduction is resulted as the hardware computes both directions of

the branch for all elements in a warp. Finally, there is data transfer

time between CPU and GPU in CUDA. Similar phenomenon is

expected to happen in many other EAs.

This paper concludes that the performance on the

implementation of SIB-EAs using OpenMP highly stands out

compared with CUDA and would be easier to implement. As a

result, we promote OpenMP for parallel programming on

evolutionary algorithms and emphasize the significance

irreplaceable nature of CPU on parallel programming.

5. ACKNOWLEDGEMENT
The authors would thank Mr. Shyh-Kae Chou for his help in

CUDA and OpenMP parallel computing. This work was

supported by Career Development Award of Academia Sinica

(Taiwan) grant number 103-CDA-M04, and Ministry of Science

and Technology (Taiwan) grant numbers 104-2118-M-001-016-

MY2 and 105-2118-M-001-007-MY2.

6. REFERENCES
[1] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of

evolutionary computation. Oxford University Press, 1997.

[2] C. C. Kannas, C. A. Nicolaou, and C. S. Pattichis, “A

Parallel Implementation of a Multi-objective Evolutionary

Algorithm,” in Proc. 9th International Conf. on ITAB, pp. 1–

6, Nov. 2009.

[3] S. Iturriaga, and S.Nesmachnow, “Solving very large

optimization problems (up to one billion variables) with a

parallel evolutionary algorithm in CPU and GPU,” in Proc.

Seventh International Conf. on 3PGCIC, pp. 267–272, Nov.

2012.

[4] E. Alba, Parallel Metaheuristics: A New Class of

Algorithms. Wiley-Interscience, 2005.

[5] P. Emeliyanenko, “Computing resultants on Graphics

Processing Units: Towards GPU-accelerated computer

algebra,” J. Parallel and Distributed Computing, vol. 73, no.

11, pp. 1494–1505, Nov. 2013.

[6] G.Makey and M. S. El-Dasher “Modification of common

Fourier computer generated hologram’s representation

methods from sequential to parallel computing,” Optik -

International J. Light and Electron Optics, vol. 126, no. 11–

12, pp. 1067–1071, June 2015.

[7] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,

and J.C. Phillips, “GPU Computing,” Proceedings of the

IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

[8] C. Gregg, K. Hazelwood, “Where is the data? Why you

cannot debate CPU vs. GPU performance without the

answer,” in Proc. IEEE International Symposium on ISPASS,

pp. 134–144, Apr. 2011.

[9] M. H. Rahmad, S. M. Meng, E. K. Karuppiah, and O. Hong,

“Comparison of CPU and GPU implementation of

computing absolute difference,” IEEE International Conf. on

ICCSCE, pp. 132–137, Nov. 2011.

[10] F. K. H. Phoa, R. B. Chen, W. Wang, and W. K. Wong,

“Optimizing Two-level Supersaturated Designs using Swarm

Intelligence Techniques,” Technometrics, Oct. 2014.

[11] V. Roberge, M. Tarbouchi, and F. Okou, “Strategies to

Accelerate Harmonic Minimization in Multilevel Inverters

Using a Parallel Genetic Algorithm on Graphical Processing

Unit,” IEEE Trans. on Power Electronics, vol. 29, no. 10, pp.

5087–5090, Oct. 2014.

[12] D. Zubanovic, A. Hidic, A. Hajdarevic, N. Nosovic, and S.

Konjicija, “Performance Analysis of Parallel Master-Slave

Evolutionary Strategies (μ,λ) Model Python Implementation

for CPU and GPGPU,” in Proc. 37th International

Convention on MIPRO, pp. 1609–1613, May 2014.

[13] A. E. Eiben, J. E. Smith, Introduction to Evolutionary

Computing. 2nd ed. Springer , pp. 15–35, 2015.

[14] Booth, K.H.V., and Cox, D.R, Some systematic

supersaturated designs. Technometrics, vol. 4, pp. 489–495,

1962.

5

