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ABSTRACT 

Algorithm parallelization diversifies a complicated computing 

task into small parts, and thus it receives wide attention when it is 

implemented to evolutionary algorithms (EA). This works 

considers a recently developed EA called the Swarm Intelligence 

Based (SIB) method as a benchmark to compare the performance 

of two types of parallel computing approaches: a CPU-based 

approach via OpenMP and a GPU-based approach via CUDA. 

The experiments are conducted to solve an optimization problem 

in the search of supersaturated designs via the SIB method. Unlike 

conventional suggestions, we show that the CPU-based OpenMP 

outperforms CUDA at the execution time. At the end of this paper, 

we provide several potential problems in GPU parallel computing 

towards EA and suggest to use CPU-based OpenMP for parallel 

computing of EA. 

CCS Concepts 

• Computing methodologies ➝ Optimization algorithms and 

Massive parallel algorithms   • Software and its engineering ➝ 

Distributed memory and parallel programming languages.  

Keywords 

Swarm Intelligence; Parallel Computing; OpenMP; CUDA. 

1. INTRODUCTION 
Evolutionary algorithm (EA) is typically a population based 

stochastic search technique and has been successfully used to 

solve hard optimization, search, and machine learning problems. 

It achieves a high level of problem solving efficacy in many 

engineering application areas, such as civil, mechanical, and 

industrial engineering, computer science, power systems, control, 

and signal processing in the engineering [1] or in the area of 

biomedicine/bioinformatics for cancer chemotherapy optimization, 

cancer chemotherapy drug scheduling model development and 

problem solving for protein folding [2]. As the amount of 

processing data have become nearly inconceivable, EAs have 

been applied to solve optimization problems with increasing 

difficulty and complexity [3]. The sequential programming no 

longer suffices for the needs of EAs. In order to improve the 

efficiency of EAs, parallel implementations have been used to 

significantly reinforce and speed up the search, allowing to 

achieve high quality results in reasonable execution times [4]. 

Parallel computing is a type of computation that simultaneously 

utilizes multiple computing resources (such as cores, computers) 

to solve a computational problem. A parallel programming is 

created for performing the normally sequential steps of a 

computer program simultaneously, using two or more processors. 

CPUs and GPUs have significantly different architectures that 

make them better suited to different tasks. Multitasking is heavily 

dependent on the type of application and since it could be 

sequential or parallel, CPU and GPU both are essential to perform 

better on such cases. Recently, much research focuses on 

expanding the usage scenarios for GPU since it works well to use 

large scale data decomposition and offers orders of magnitude 

speedups on those problems with highly parallel structure [5], [6]. 

However, individual processing units in a GPU cannot match a 

CPU for general purpose performance for that they are much 

simpler and do not have optimizations like long pipelines, out-of-

order execution and instruction-level-parallelization. In addition, 

GPU computing also requires data transfer between CPU and 

GPU and cause data transmission overhead. [7] has also 

mentioned some of the problem in GPU programming.  

This study explores the extent to which traditionally CPU 

domain problems can be mapped to GPU architectures using 

current parallel programming models and provide insights into 

why certain throughput computing kernels perform better on CPU 

and others work better on GPU. GPU performance is compared to 

both single-core and multi-core CPU performance. For GPU 

computing, [8] and [9] have found the overall performance of 

general purpose GPU much slower considering data transfer 

latency and lay stress on the necessity of including memory 

transfer overhead when reporting GPU performance. We present 

different parallel models, Open Multi-Processing (OpenMP) and 

Compute Unified Device Architecture (CUDA), on the swarm 

intelligence based-evolutionary algorithm (SIB-EA) [10] to 

analyze the performance of parallel implemented swarm 

intelligence based Supersaturated Design (SIBSSD) algorithm 

between CPU and GPU as our benchmark of EAs. Finally, we 

evaluate their efficiencies under different implementations via 

their simulation results. 

This paper is organized as follows. Section 2 presents the two 

main computing procedures on SIB-EAs – CPUs and GPUs with 

OpenMP and CUDA respectively. Section 3 demonstrates the 

simulation results with SIBSSD. Finally, concluding remarks are 

presented in Section 4. 
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2. Parallel Computing: CPU versus GPU 
The aim of this study is to compare the efficiency of parallel 

programming between OpenMP, CUDA and a single-core CPU to 

explore the efficiency to implement SIB-EAs with parallel 

programming. In the next section, we run SIBSSD on different 

platforms using OpenMP, CUDA and single-core CPU 

respectively. 

2.1 Swarm Intelligence Based Evolutionary 

Algorithm (SIB-EA) 
Many researches are interested in the analysis of big data and 

emphasize the importance of computational speed when dealing 

with the data calculation. In this paper, instead of only focusing 

on the speed of parallel computing, we are also interested in the 

availability of parallel programming when dealing with EAs since 

a large number of their functionalities are distinct and self-

contained. We analyzed the core computation and coding 

characteristics of SIB- EA kernels using both OpenMP and 

CUDA. 

The common idea in EAs behind all the techniques are the 

same: given a group of randomized particles as a set of candidate 

solutions and apply an objective function as an abstract fitness 

measurement. Based on this fitness, the suitable candidates are 

chosen to seed the generation by applying mutation (MIX) and 

recombination (MOVE) to them. After executing MIX and 

MOVE procedure on the candidates, the candidates (the elements 

inside each particle) are evaluated by the objective function, the 

best-fitted candidates will be set as the updated particles and being 

selected as new candidates for the next generation in the next 

iteration. The process continues until either a candidate with 

sufficient quality is found or the computational limit is reached. 

Details are omitted but interested readers may refer to [11]. In this 

research, SIBSSD is executed in a parallel fashion as a benchmark 

of parallel implemented SIB-EAs.       is used as the quality 

function, further detail for       may refer to [12]. 

2.2 Computing with CUDA 
CUDA is a parallel computing platform and application 

programming interface (API) model created by NVIDIA. It allows 

software developers to use a NVIDIA GPU for general purpose 

processing – an approach known as GPGPU. The CUDA platform 

is a software layer that gives direct access to the GPU's virtual 

instruction set and parallel computational elements and is 

designed to work with programming languages such as C and 

Fortran. This accessibility makes it easier for specialists in parallel 

programming to utilize GPU resources. To compute with CUDA, 

it is required to communicate between the HOST (CPU) and 

DEVICE (GPU). To start parallel programing in GPU, we have to 

first transfer the data from the HOST to the DEVICE, then we can 

start computing in the GPU with multiple threads. Finally, the 

data is transferred back to the HOST after the computations end. 

Our experiment runs on the GPU platforms, NVIDIA GeForce GT 

740M with the process mainly executed in the kernel function of 

CUDA based on C. 

The main idea of our computing kernel for an evolutionary 

algorithm like SIBSSD is discussed and shown in Figure 1. There 

are two main parts in the computing procedure, initialization and 

main operation. In the first part, the code is written in original C 

language in CPU end and that GPU has not yet been used. The 

procedure randomly generates a set of balanced     matrix as 

initial particles where each column in the matrix represents a 

single particle, evaluates the objective function (     ) value of 

each particle, initializes Local Best (LB) for each particle and 

Global Best (GB) for all the particles and sets the initialized 

particles as the candidate solutions. 

 During the iteration, MIX and MOVE operations are carried 

out. The MIX operation is a column exchange procedure, 

consisting of  

 
 

column deletion and addition. For each generated candidate i.e. 

           ,   columns are replaced in   by   columns from 

another candidate            , so that the replaced design has 

a smaller criterion value. In the MOVE operation, the movement 

of a particle is completed by replacing each current particle with 

possibly another particle to reach a smaller value of      . 

Before starting the calculation in GPU, we use cudaMalloc 

and cudaMemcpy in the code for allocating the size of the 

memory and for transferring the data required for computation in 

the GPU. The particles are grouped together into blocks in CUDA, 

and blocks are processed in parallel. Then, the MIX operation 

mainly deals with deleting and adding columns, the particles are 

first transformed into matrices containing       and operate the 

column deletion simultaneously. In the column deletion, the 

correlations between column pairs are computed and saved as 

correlation matrices, then we search and delete the index of 

columns with the largest correlation in the matrices. After the 

column deletion, the column addition follows, which does almost 

the same as deleting columns except that the particle 

transformation matrices are added with the columns on the index 

that has the minimum value of correlation. 

In the MOVE operation, particles replace each current particle 

with another particle to reach a smaller value in the quality 

function. With the evaluated       value of each particles in the 

MIX procedure, we compare the       values among three 

options and decide which one should be chosen as the new 

candidate in the next iteration. In this part, if/else statements and 

index-searching are operated to compare the values of the 

particles simultaneously in each blocks.  

In CUDA, memory allocation is also an important issue of 

speeding up the procedure in an efficient way. The memory 

Figure 1. The process of SIBSSD with CUDA. 

 

. 
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architecture of the NVIDIA GPU is depicted as Figure 2. In the 

HOST end, the study sets the initialized particles in the global 

memory instead of the constant memory for that the constant 

memory has a size limit of 64KB that is not enough to save the 

entire data when we have particles samples larger than 64KB, 

which is often the situation during big data analysis even though 

the constant memory has a cache with 8KB but the global 

memory does not. On the other hand, as a profitable way of 

performing computation on the device, we partition the particles 

as a data subset and load it into the declared shared memory to 

take advantage of its fast accessing speed. Share memory is a low-

latency, high-bandwidth, indexable memory that runs close to 

register speeds. Therefore, when we compute on the subset from 

shared memory, each thread can access the data efficiently with 

the highly decreased latency overhead with every threads in the 

same block sharing the same memory. 

 

 
 

2.3 Computing with OPENMP 
OpenMP is an implementation of multithreading, a method of 

parallelizing a master thread into a specified number of slave-

threads to divide the task among them, depicted in Figure 3. The 

threads then run concurrently, with the runtime environment 

allocating threads to different processors. This study uses Intel(R) 

Core(TM) i5-3337U CPU (Dual Core) with 1.8GHz clock speed 

as our platform for OpenMP to execute the SIB-EA, choosing the 

same section to parallelize as we did in CUDA. By using the APIs 

provided by OpenMP, this study parallelizes the for-loops inside 

the kernel by adding #pragma omp parallel {#pragma omp for 

schedule(static), private(j), which is indeed quite simple when 

compared to CUDA. To ensure all threads complete their tasks 

before moving to the next iteration, we add #pragma omp barrier} 

at the end of the parallel section to pause all threads until all 

threads execute the barrier. Instead of parallelizing the particles, 

OpenMP parallelizes the for-loop inside the kernel shown in 

Figure 4. The main for-loop is executed simultaneously with the 

cores in the CPU. 

 

 

 

 

3. Demonstration and Discussion : SIBSSD 

Example   
In this section, the study evaluates the performance difference 

between CUDA and OpenMP by testing the execution time of 

SIBSSD on each platform, where SIBSSD is set as the benchmark 

for SIB-EAs. This paper takes the data transfer time into account 

for fair comparison of real speedup provided by a device. 

 

 

 

The total execution time is analyzed and it is set as an indicator 

to observe the computing performance. This paper compares the 

difference of the execution time with different parameter values in 

SIBSSD with         SSDs, where   is the size of the particle 

and      is the total number of SSDs. The size of the input data 

has a major influence on the execution time of the programs. The 

difference between the time span of the execution is discussed by 

setting the parameters values as the control variable and we focus 

only on the performance between CPU and GPU.  

Visual Studio 2013 is used to conduct the comparison between 

CUDA and OpenMP under several premise. The computation 

limit of       value and the total iterations are set to be 2.5 and 

Figure 4. Loop inside the kernel of OpenMP. 

 

. 

 

 

Figure 2. Memory architecture of GPU with CUDA. 

 

Figure 3. The process of SIBSSD with OpenMP. 
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100 respectively. This study adopts NVIDA CUDA toolkit 7.5 for 

operating CUDA in Visual Studio 2013. 

3.1 Performance Comparison of SIBSSD  
We execute SIBSSD in two scenarios: CUDA and OpenMP 

(dual core). The execution results under different values of   and 

     are demonstrated in Figures 5 and 6. The values on each bar 

of these figures are in the unit of seconds per iteration (s/iteration). 

An interesting observation is found in the figure: Computing in a 

single-core CPU is even more efficient than CUDA. As the 

dimensions grow, the exceeding performance of single-core CPU 

to CUDA becomes apparent. Thus,  SIB-EAs are apparently not 

suited to execute in CUDA. CUDA has a less efficient 

performance compare to a single-core CPU. Second, the 

efficiency of OpenMP outperforms that of CUDA. In almost all 

cases, the operation time of OpenMP is about 20 times faster than 

that of CUDA. Apparently, SIB-EAs and many evolutionary 

algorithms are not suited to execute in CUDA. It is totally 

opposite to conventional suggestion about the promotion on the 

use of GPU parallel computing. 

 

 
 

 

 

 
 

3.2 Discussion 
Figure. 7 shows the computing results that OpenMP has 

approximate a 20 speedup rate when compared to CUDA. In this 

discussion, we attempt to explain the underlying reasons why such 

unexpected phenomenon may result. 

In SIBSSD and many evolutionary algorithms, there are some 

disadvantages of using CUDA as a computing platform. During 

the entire process in the kernel function, particles were 

parallelized into different share memory while each share memory 

consists of a particle with size of   and each block contains one 

share memory. 

 

 

 

It allows all the particles to operate the MIX and MOVE 

operations simultaneously with the particles parallelized in a 

block-dimension. However, in SIB-EAs, although the particles 

operate in the same way, each elements does not perform the same 

calculations. To follow the SIMD structure, all the calculations of 

each particle can only be carried out by a single thread in the GPU 

and makes it unable for the operation to achieve highly data-

parallelism. In other words, the structure in SIBSSD does not 

allow us to make full use of the parallelization structure in GPU. 

Instead of parallelizing the elements of each particle into threads, 

the EAs only allows us to parallelize the particles into blocks. 

Consequently, GPU randomly chooses one thread to finish the 

entire operation for every cells in each particle, all the operations 

for the elements in the particles are operated with one GPU thread 

only and it causes an apparent increase in the operation time 

compare to CPU. Since the elements in each particles do a lot of 

linear algebra calculations with only one of the weak cores in 

GPU, the operation would be eventually more time-consuming. 

On the other hand, for the MOVE operation, since the decision 

making step consists of a bunch of if/else branching, GPU 

computes both directions of the branch for all warps in each block 

and results in overhead and efficiency reduction.  

In addition, most GPU are designed for stream or throughput 

computing, where cache memories are ineffective. To tolerate 

memory latency, it requires a high degree of multithreading. 

Nevertheless, the structure of SIBSSD is not able to be highly 

parallelized and it leads to a great reduction in the computing 

performance. Besides, we also take the time of data transfer into 

account for that we have to transmit the huge amount of data from 

CPU to GPU and then transfer the data back after the calculations 

in the kernel function. In brief, the EAs does not provide a highly 

parallel environment for all the elements in the particles to follow 

a SIMD model structure and would largely decrease the speed of 

calculation.  

For OpenMP, both task parallelism and data parallelism can be 

achieved. It is based upon the existence of multiple threads in the 

shared memory programming paradigm. A shared memory 

process consists of multiple threads and the threads can cache 

their data and are not required to maintain exact consistency with 

real memory all of the time, which can reduce the data accessing 

latency automatically without giving any other instructions to the 

computer. The caches provided by the CPU makes it easy for 

OpenMP to achieve task parallelism without latency overhead 

which is not the case in GPU due to its architectural 

implementation. 

In SIBSSD, each thread in CPU parallelizes the candidate-

updating iteration. Since the main iteration is executed 
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Figure 6. Runtime of SIBSSD with OpenMP.  
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simultaneously and the operations of each particle are carried out 

by a much more powerful CPU core, OpenMP stands out in the 

performance. It is also interesting to know that OpenMP provides 

a user-friendly interface and would be easier for programmers to 

implement than CUDA. 

Similar phenomenon is expected to happen in other EAs. These 

“nature-inspired” EAs feature inter-unit “communications”, which 

usually lead to many if/else branching for unit comparison. In 

addition, their convergence towards optima require an attractive 

force from their overall best unit, which require excessive data 

transfer and increase calculation time. There are some EAs that do 

not need such attractive force, like genetic algorithm, but their 

convergence towards optima is usually slow. 

4. CONCLUSIONS 
As shown in the simulation, OpenMP (dual Core) has a better 

performance than CUDA (a 20-times speed increase on SIB-EAs).  

For SIB-EAs, there are some disadvantages of using CUDA as 

a computing platform. For GPU to operate efficiently and faster 

than CPU, algorithm must take advantage of the large parallelism 

inherent in a GPU's design, particularly for floating point. In other 

words, the architecture feature of the algorithm is a key to 

accelerate the entire throughput computing workload. However, 

due to the structure of SIB-EAs, it fails to make full use of the 

parallelization structure, because the particles are only able to be 

parallelized into blocks consisting of only one thread. Since every 

thread is carried out by a weaker core than CPU, the 

computational workload increases. Besides, memory latency also 

reduces the computing efficiency in the benchmark of this study. 

Unlike OpenMP, the cache memory in most GPU are ineffective 

and mostly result in memory latency overhead if the operations do 

not reach a certain amount of parallel degree. In addition, the code 

for SIB-EAs consists of many if/else branching, so a performance 

reduction is resulted as the hardware computes both directions of 

the branch for all elements in a warp. Finally, there is data transfer 

time between CPU and GPU in CUDA. Similar phenomenon is 

expected to happen in many other EAs. 

This paper concludes that the performance on the 

implementation of SIB-EAs using OpenMP highly stands out 

compared with CUDA and would be easier to implement. As a 

result, we promote OpenMP for parallel programming on 

evolutionary algorithms and emphasize the significance 

irreplaceable nature of CPU on parallel programming. 
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